HIOK

Improve
 Power Conversion Efficiency

From DC to 2 MHz , industry's proven solution
for high-accuracy power analysis.
The next-generation POWER ANALYZER.

Scan QR Code to Watch Video

All new
 current
 sensor

Ver. 3.00

Achieving true power analysis

DC, 0.1 Hz to 2 MHz frequency bandwidth Obtain even greater accuracy in high-frequency power measurements with the aid of Hioki's current sensor phase shift function

A wide frequency range is required for power measurement due to the acceleration of switching devices, especially SiC. High accuracy, broadband, and high stability. The PW6001's world-class technology-based fundamental performance makes in-depth power analysis a reality.

$\pm 0.02 \%^{*}$ basic accuracy for power Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of $80 \mathrm{~dB} / 100 \mathrm{kHz}$. Add the superior temperature characteristics of $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

Solid shield

Optical isolation device

18-bit resolution, 5 MS/s sampling

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at $5 \mathrm{MS} / \mathrm{s}$, resulting in a measurement band of 2 MHz . This enables analysis without aliasing error.

TrueHD 18-bit converter* measures widely fluctuating loads with extreme accuracy

A built-in 18-bit A/D converter provides a broad dynamic range. Even loads with large fluctuations can be shown accurately down to tiny power levels without switching the range. Further, a digital LPF is used to remove unnecessary high-frequency noise, for accurate power analysis.

> Conversion efficiency measurement during mode measurement without switching ranges

Calculations for up to five independent signal paths (period detection/broadband power analysis/ harmonic analysis/waveform analysis/FFT analysis) are independently and digitally processed, eliminating any effects one may have on another. Achieve a 10 ms data update speed while maintaining full accuracy through high-speed processing.

[^0]
Functions and Characteristics

Max Speed 10 ms , Maximum $12 \mathrm{ch}^{\star}$ High Accuracy Power Calculation

Data updates in 10 ms to 200 ms . Make high speed calculations while maintaining high accuracy. Achieve measurement stability with original digital filter technology, and measure power after automatically tracking frequency fluctuations from 0.1 Hz .

- Two 8-channel model devices, during synchronized function usage

Simple, high-precision efficiency and loss calculations

When measuring DC/AC converter efficiency, accuracy is required not only for $A C$ but also DC. The basic DC measurement accuracy of the PW6001 is $\pm 0.02 \%$, enabling you to make accurate and stable efficiency measurements.

Setting up efficiency calculation formulas for power conditioners and similar equipment is simple on the dedicated screen. Simultaneously display loss and efficiency calculations for a maximum of four systems.
-Device accuracy

Independent harmonic analysis for a maximum of 6 systems (wideband/IEC)

0.1 Hz to 300 kHz fundamental frequency, 1.5 MHz analyzable bandwidth. Comes equipped with IEC61000-4-7-compliant harmonic analysis and up to 100th order wideband harmonic analysis.

Synchronize invertar input/output and each fundamental wave

Applications

- Motor fundamental wave analysis
- Wireless power transmission waveforms
- Measuring distortion ratio of power conditioner output waveforms

Extensive Current Sensor Lineup Achieve a Combined Basic Accuracy of $\pm 0.04 \%$
 Choose the best sensor for your application: the pullthrough type for highly accurate and high current measurements up to 2000 A , the clamp type for quick and easy wire connection, or the direct input type for high accuracy and broadband Connect a sensor for oscilloscopes for even more options
 PW6001 comes equipped with a sensor power line built-in Automated recognition functions make setup a cinch.

' $\pm 0.075 \%=$ accuracy in combination with PW9100

Ver. Large-capacity waveform storage for 3.00 oscilloscope/ PQA-level waveform analysis

Waveform Storage of $1 \mathrm{MWord} \times$ (voltage-current $6 \mathrm{ch}+$ Motor Analysis 4 ch). The torque sensor and encoder signals are displayed along with the voltage and current waveforms.

In addition to level triggers, Ver. 3.00 now includes event trigger functions triggered by RMS value and frequency fluctuations. Cursor measurement and waveform zoom functions also render oscilloscopes unnecessary for waveform analysis.

FFT analysis of target waveforms

Analyze frequencies up to 2 MHz across 2 channels. Specify any waveform analysis range you like and view the 10 highest peak values and frequencies. Observe frequency components that do not show up in harmonics and save the measured results.

Ver. Newly Added Functions Ver. 3.00
300 If you already have the PW6001, these functions will be added with the firmware version update (free of charge).

Flat Frequency Characteristics

Frequency characteristics are flat up to 1 MHz even when the power factor is zero. Use together with the Current Senso Phase Shift Function to make highly accurate low power factor measurements of high-frequency waves. Also ideal for loss assessment of high-frequency transformers and reactors.

- Options to further improve high-frequency wave phase characteristics available.

Contact us for more information.

D/A Monitor

View up to 8 channels of progressive fluctuations in measured values Voltage, current, power, frequency and other parameters are updated at the fastest rate of 10 ms , allowing you to observe even the tiniest variations.

Applications

- Power conditioner FRT Analysis
- Motor Transient State Power Analysis

FRT (Fault Ride Through):
Ability to continue operation despite system disturbance in the power conditioner or similar systems

X-Y Plot

Easily check correlations in measured values for up to two systems simultaneously. Plot physical quantities other than measured values as well by using it together with the user defined calculation function.

Applications

- Motor characteristics analysis
- Transformer characteristics analysis
- Power conditioner MPPT Analysis

MPPT: Maximum Power Point Tracker

Current Sensor Phase Shift Function

Our original virtual oversampling technology, evolved Make phase compensation equivalent to $2 \mathrm{GS} / \mathrm{s}$ oscilloscopes a reality while maintaining $5 \mathrm{MS} / \mathrm{s} 18$-bit high resolution. Perform current sensor phase compensation with a 0.01° resolution, and measure power more accurately (Ver 2.00 and later). With the Current Sensor Phase Shift Function, you can now achieve even more accurate high frequency, low power factor power measurements

Complex calculation formulas settable on the device

Set equations to compute measurement values any way you want. Enter up to 16 calculation formulas, including functions like \sin and \log Calculation results can be used as parameters for other calculation formulas, enabling complex analysis.

Applications

- Calculate multisystem efficiency and loss with solar power modules and similar equipment
- Calculate Ld. Lq for motor vector control
- Calculate transformer current B and H utilizing Epstein's Method

Supports various power analysis systems

Improved connectivity to PCs over LAN. Remotely operate the PW6001 using a browser from any PC, tablet, or smartphone via the HTTP server function. Acquire files through the network with the FTP server function. LabVIEW driver and MATLAB Toolkit are also available.

Specially designed for current sensors to achieve highly precise measurement

With direct wire connection method

The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the effects of wiring resistance and capacitive coupling, and meter loss occurs due to shunt resistance, all of which lead to larger accuracy uncertainty.

Advantages of current sensor method

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system.

Measurement example using the direct wire connection method

Measurement example using the current sensor method

Compared to the direct wire connection method, measurement with conditions closer to the actual operation environment of a power converter is achieved.

Ver. Seamless operability
3.00 Simple settings and intuitive operating interface. From Ver 3.00, a low power factor measurement (LOW PF) mode is included.

[^1]
Build a 12-channel power meter using "numerical synchronization"

For multi-point measurements, use the numerical synchronization function to transfer power parameters from the slave device to aggregate at the master in realtime, essentially enabling you to build a 12-channel power analysis system

- Real-time display of slave instrument measurement values on master instrument screen
- Real-time efficiency and loss calculations between master and slave instruments
- Save data for 2 units on recording media in master instrument
- Use the slave's measured values on the master's userdefined calculations

Measure phase difference between 2 separate points

Use the waveform synchronization function to measure the phase relationship between 2 points separated by a maximum distance of 500 m . Due to insulation with an optical connection cable, measurement can be performed safely even if the ground potential between the 2 points is not the same.

Wide range of Motor Analysis functions (Motor Analysis and D/A output model)

Enter signals from torque meters and speed meters to measure motor power. In addition to motor parameters such as motor power and electrical angle, output signals from insolation meters and wind speed meters can also be measured.

Operating mode	Single	Dual	Independent input
(3) $\operatorname{ch} A$	Torque	Torque	Voltage/ Pulse
ch B	Encoder A phase signal	Torque	Voltage/ Pulse
ch C	Encoder B phase signal	RPM	Pulse
ch D	Encoder Z phase signal	RPM	Pulse
Measuremant targets	Motor $\times 1$	Motor $\times 2$. Motors. transmissions, etc.	Pyranometer/ anemometer and ather output signala
Measurement parometers	Electric angle Rotation direction Motor power RPM Torque Slip	Motor power $\times 2$ RPM $\times 2$ Torque $\times 2$ $\text { Slip } \times 2$	Voltage $\times 2$ \& Pulse $\times 2$ or Pulse $\times 4$

Simply transfer waveforms with "waveform synchronization"

Data sampled at 18 bits and $5 \mathrm{MS} / \mathrm{s}$ is sent between instruments in real time*, and the waveform measured by the slave is displayed as-is on the master instrument. This functionality lets you use the power analyzers to measure the voltage phase difference between two remote locations, for example at power substations, manufacturing plants, or railroad facilities.

Master
Display max. 0
channels of waveforms
for master and slave

Slave
Transfer waveform
data for max. 3
data for max

- Real-time display of slave instrument waveforms on master instrument screen
- Harmonic analysis and fundamental wave analysis for master instrument and slave instrument
- Simultaneously measure waveforms on master device while using the slave to trigger
- D/A output of the slave instrument's waveform from the master instrument
- For both master instruments and slave instrument, woveform synchronization operates only when there are 3 or more channels. Max ± 5 sampling error

D/A output waveforms captured 500m away

Transfer voltage/current waveforms taken by the slave instrument located as far as 500 m away and output the signals from the master device. When combined with a Hioki MEMORY HiCORDER, timing tests and simultaneous analysis of multiple channels for 3-phase power are possible.

Max. analog 32 channels + logic 32 channels MEMORY HICORDER MRB82?

The wavelorm that is output has a delay of $7 \mu s$ to $12 \mu \mathrm{~s}$, depending on the distance.

Analog Output and 1 MS/s Waveform Output
 Notor Analysio and D/A outpst model

Output analog measurement data at update rates of up to 10 ms . Combine with a data logger to record long-term fluctuations, and use the built-in waveform output function to output voltage and current at $1 \mathrm{MS} / \mathrm{s}^{*}$.

[^2]
Applications

EV/HEV inverter and motor analysis

Ver. Calculate transient state power with
3.0010 ms high accuracy and high speed
3.0010 ms high accuracy and high speed

Measure power transient states, including motor operations such as starting and accelerating, at 10 ms update rates. Automatically measure and keep up with power with fluctuating frequencies, from a minimum of 0.1 Hz . Ver. 3.00 increases the stability of efficiency calculations further by delivering a function to calculate the electric power for one motor cycle.

Data updated at 10 ms intervals
Even during frequency fluctuations from low to high, the fundamental waveform is automatically pursued. Comes equipped with $\Delta-Y$ and $Y-\Delta$ conversion while calculating with a high degree of accuracy.

Simultaneous measurement of 2 motor powers

The PW6001 is engineered with the industry's first built-in dual mode motor analysis function that delivers the simultaneous analysis of 2 motors. Simultaneous measurement of the motor power for HEV driving and power generation is now possible.

Example of 2 motor measurement

Advanced electrical angle measurement function

Comes equipped with electrical angle measurement necessary for vector control analysis via dq coordination systems as well as high efficiency synchronous motor parameter measurements. Measure voltage and current fundamental wave components based on encoder pulses in real time In addition, analyze 4 quadrants of torque and rotation through detecting the forward/reverse from A-phasic and B-phasic pulses.

Caloulate the $L d$ and $L q$ values with user-defined operation
*Scan the QR codes on the right to download technical briefs about electrical angle measurements

Evaluate inverter motor efficiency and loss

Evaluate efficiency and loss for an inverter, motor, and overall system by simultaneously measuring the inverter's input and output power and the motor's output. You can also create an efficiency map or loss map in MATLAB using measurement results recorded by the PW6001 at each operating point MATLAB is a registered trademark of Mathworks, Inc.

Chopper circuit reactor loss measurement

*Scan the OR code on the right to download a technical brief about reactor loss measurements.

Ver. High-frequency and low power 3.00 factor device evaluation

Reactors are used for high harmonic current suppression as well as the voltage step up/down of chopper circuits. The PW6001's outstanding high frequency characteristics, highspeed sampling, and noise-suppressing performance are extremely effective in evaluating high-frequency, low power factor devices (reactors, transtormers, etc.).
With the addition of a low power factor measurement (LOW PF) mode to the Quick Configuration menu in Ver 3.00 , measurements can now be performed even more quickly

Harmonic analysis synchronized with switching frequencies

With the PW6001 you can perform harmonic analysis of fundamental waves up to 300 kHz with a band frequency of 1.5 MHz . For reactors used by chopper circuits, measure phase angles and RMS values for the current and voltage of each harmonic order through harmonic analysis synchronized with the switching frequency.

Current Sensor Phase Shift Function

In addition to the PW6001's flat, broad frequency characteristics, sensor phase error compensation allows highly accurate high-frequency and low power factor device analysis.

Circuit impedance analysis

Calculate circuit impedance, resistance, and inductance by using harmonic analysis results and user defined calculations. $X-Y$ plot functions are especially effective for impedance analysis.

- Impedance Z [Ω]
= fundamental frequency voltage / fundamental frequency current
- Serial resistance RS [Ω]
$=2 \times \cos$ (voltage phase angle-current phase angle)
- Seriat inductance La [H]
$=Z \times \sin$ (voltage phase angle - current phase angle) / ($2 \times \pi \times$ trequency)

PV/Wind turbine Power Conditioner (PCS) Efficiency Measurement

Supports PCS-specific measurements

Simultaneously display the necessary parameters for PCS such as efficiency, loss, fundamental wave reactive power Qfnd, DC ripple ratio, three-phrase unbalanced factor, etc. Easily check the required measured items for improved test efficiency. In addition, by setting the DC power sync source to the output AC power channel, you can perform DC output and stable efficiency measurements perfectly synchronized with the output AC.

Ver. Use event triggers to analyze 3.00 waveforms

An event trigger function is now available with Ver.3.00. Set triggers for up to four measurement items, such as RMS value and frequency, and record waveforms during an event for up to 100 seconds. If you need to record waveforms for more than 100 seconds, use the D/A output function (Motor Analysis \& D/A output option) to observe and record waveforms with a recorder, simplifying the evaluation system. (It is not necessary to connect a differential probe or current probe to the recorder.)

Harmonic analysis and conductive noise evaluation

The PW6001 can perform IEC standard-based harmonic measurements that comply with IEC 61000-4-7. In wind power generation, where the generator hardware and grid operate at different frequencies, dual vector displays let you identify the tri-phase equilibrium at a glance. In addition, FFT analysis lets you to evaluate conductive noise generated by devices such as switching power supplies from 2 kHz to 150 kHz

Measure output harmonics and noise through inout waveform FFT analysis

Voltage frequency measurement fundamental accuracy of $\pm 0.01 \mathrm{~Hz}^{*}$

Perform frequency measurements required for each PCS test with world-class accuracy and stability. Achieve highly accurate frequency measurement values for a maximum of 6 ch (12 ch when there are two devices) while measuring each parameter at the same time.

* $\pm 0.01 \mathrm{~Hz}$ fundamental accuracy is defined for cases where the data update is over 50 ms . Please contact us for even more precise frequency measurement.

Measure the efficiency of wireless power transmission (WPT)

Accurate measurement, even of low-power-factor power

In wireless power transfer / transmission (WPT), the inductance component of the energy transmit and receive elements lowers the power factor. The PW6001's current sensor phase shift function can be used to accurately measure high-frequency, low-power-factor power. In WPT measurement, it's extremely effective to combine the PW6001 with a high-bandwidth current measurement tool.

Analyze transmission frequency harmonics

The PW6001's harmonic analysis function can analyze fundamental harmonics of up to 300 kHz at a bandwidth of up to 1.5 MHz . For example, with a circuit that uses an 85 kHz band switching frequency (a frequency that could be used in power transmission in electric vehicle applications) as the fundamental harmonic, the analyzer is capable of simultaneously measuring voltage, current, power, and phase angle for both receive and transmit through the 15th order.

Harmonic bar graph display

Harmonic two-circuit vector display

Automatic WPT TEST SYSTEM (For more information, please see the TS2400 product catalog.)
The WPT Evaluation System TS2400 is a system for automatically measuring the reproducible data that is required to evaluate WPT hardware by integrating measurement with an XYZ stage. A single software package provides control and automatic measurement functionality for instrument configuration, transmit and receive device positioning, and data collection. The results of analyses can be presented using a variety of bar graphs.

WPT evaluation supports the following types of measurement:

- Power transfer efficiency measurement (using the PW6001)

WPT TEST SYSTEM TS2400

Example of a 4D graph of transfer efficiency

Interfaces Names of parts

USB flash drive-	
GP-IB	Data viewable through dedicated application Command control
	Data viewable through dedicated application Command control Bluetooth ${ }^{\oplus}$ logger connection
RS-232C	Send the D/A output of values measured with the PW6001 (maximum of 8 items) wirelessly to the Hioki Wireless Logging Station LR8410 using the dedicated cable and Bluetooth $®$ serial conversion adapter. (Approx. 30m* line of sight)The observable output resolution is dependent on the LR8410's resolution. * The presence of obstructions (walls, metal, etc.) may shorten the communication range or destabilize the signal. * Bluetooth® is a trademark of Bluetooth SIG, Inc. and licensed for use by HIOKI E.E. CORPORATION.
External I/O	START/ STOP/ DATA RESET control Terminals shared with RS-232C, ± 5 V/200 mA power supply possible
LAN	Gbit LAN supported Command control View data in free dedicated application

$\begin{array}{l}\text { Synchronous } \\ \text { control }\end{array}$	Optical connection cable connector, Duplex-LC (2-core)
$\begin{array}{l}\text { D/A output } \\ \text { (PW6001-11 to } 16 \text { only) }\end{array}$	$\begin{array}{l}\text { Switching for } 20 \text { channels of analog output or maximum } \\ 12\end{array}$
$\begin{array}{l}\text { Channels of waveform + }+8 \text { channels of analog output } \\ \text { input component }\end{array}$	$\begin{array}{l}\text { Power can also be supplied from the PW6001 to Probe1 } \\ \text { or Probe2 by using the sliding cover. }\end{array}$

Motor Analysis input component	Input signals from torque meters or rotation meters to measure motor power. Measure motor signals including electric angle and motor power from instruments such as actinometers and anemometers.
USB flash drive	
Save waveform data/measured data (csv) Save screen copy (bmp) Save interval data (csv) in real time at the fastest interval of 10 ms	
64 MB	Save interval data and internal memory send it to a USB flash drive later

Download the communication command manual from the HIOKI website at www.hioki.com

Software

PW Communicator

LabVIEW *

MATLAB *

PC Communication Software - PW Communicator

PC Communicator is a free application that connects to the PW6001 via a communications interface (Ethernet, RS-232C, or GP-IB), making it easy to configure the instrument's settings and to monitor or save measured values and waveform data from a computer. The software can simultaneously connect to up to 8 Hioki power measuring instruments, including the PW6001, Power Analyzer PW3390, Power Meter PW3335, PW3336, and PW3337, and it can provide integrated control over multiple models. The software can also be used to simultaneously save measurement data on the computer and calculate efficiency between instruments.

LabVIEW driver and MATLAB toolkit

Hioki's LabVIEW driver and MATLAB toolkit can be used to build data collection and measurement systems. We also offer a number of sample programs to help you get started.

GENNECT One SF4000

The SF4000 is a free application software that lets you display and save measurement data on a PC in real-time after connecting the PW6001 to the PC via Ethernet.

The application is also compatible with other Hioki measuring instruments such as Memory HiLogger LR8450 and the Wireless Logging Station LR8410, letting you connect up to 15 units at the same time to monitor, graph and display lists of measured values from multiple instruments all at once and in real-time. This is especially effective for performing a total analysis of power, temperature and other factors of equipment.

Specifications

Accuracy	Sine wave input with a power factor of 1 or DC input, terminal-to-ground voltage of 0 V , after zero-adjustment Within the effective measurement range	
	Voltage (U)	Current (1)
DC	$\pm 0.02 \%$ rdg. $\pm 0.03 \%$ f.s.	$\pm 0.02 \%$ rdg. $\pm 0.03 \%$ f.s.
$0.1 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm 0.1 \%$ rdg. $\pm 0.2 \%$ f.s.	$\pm 0.1 \%$ rdg. $\pm 0.2 \%$ f.s.
$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm 0.03 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.03 \%$ rdg. $\pm 0.05 \%$ f.s.
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm 0.02 \%$ rdg. $\pm 0.02 \%$ f.s.	$\pm 0.02 \%$ rdg. $\pm 0.02 \%$ f.s.
$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm 0.03 \%$ rdg. $\pm 0.04 \%$ f.s.	$\pm 0.03 \%$ rdg. $\pm 0.04 \%$ f.s.
$1 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm 0.1 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.1 \%$ rdg. $\pm 0.05 \%$ f.s.
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm 0.01 \times \mathrm{f} \%$ rdg. $\pm 0.2 \%$ f.s.	$\pm 0.01 \times \mathrm{f} \%$ rdg. $\pm 0.2 \%$ f.s.
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm 0.008 \times \mathrm{F} \%$ rdg. $\pm 0.5 \%$ f.s.	$\pm 0.008 \times f \%$ rdg. $\pm 0.5 \%$ f.s.
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm(0.021 \times f-7) \%$ rdg. $\pm 1 \%$ f.s.	$\pm(0.021 \times \mathrm{f}-7) \%$ rdg. $\pm 1 \%$ f.s.
Frequency band	2 MHz (-3 dB, typical)	2 MHz (-3 dB, typical)
-		
	Active power (P)	Phase difference
DC	$\pm 0.02 \%$ rdg. $\pm 0.05 \%$ f.s.	-
$0.1 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm 0.1 \%$ rdg. $\pm 0.2 \%$ f.s.	$\pm 0.1^{\circ}$
$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm 0.03 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.05^{\circ}$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm 0.02 \%$ rdg. $\pm 0.03 \%$ f.s.	$\pm 0.05^{\circ}$
$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm 0.04 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.05^{\circ}$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm 0.15 \%$ rdg. $\pm 0.1 \%$ f.s.	$\pm 0.4^{\circ}$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm 0.15 \%$ rdg. $\pm 0.1 \%$ f.s.	$\pm(0.040 \times \mathrm{f})^{\circ}$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm 0.012 \times \mathrm{f} \%$ rdg. $\pm 0.2 \%$ f.s.	$\pm(0.050 \times \mathrm{f})^{\circ}$
100 kHz < $\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm 0.009 \times \mathrm{F}$ \% rdg. $\pm 0.5 \%$ f.s.	$\pm(0.055 \times \mathrm{f})^{\circ}$
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm(0.047 \times f-19) \%$ rdg. $\pm 2 \%$ f.s.	$\pm(0.055 \times \mathrm{f})^{\circ}$

Unit for f in accuracy calculations as mentioned in the table above: kHz
Unit for fin accuracy calculations as mentioned in the table above: kHz
Voltage and current DC values are defined for Udc and Idc, while frequencies other Voltage and current DC values are defing
When U or I is selected as the synchronization source, accuracy is defined for source input of at least 5% f.s.
The phase difference is defined for a power factor of zero during f.s. input.
Add the current sensor accuracy to the above accuracy figures for Add the current sensor accuracy to the above accuracy figures for current, active power, and phase difference.
For the 6 V range, add $\pm 0.05 \%$
Add $\pm 20 \mu \mathrm{~V}$ to the DC accuracy for current and active power when using Probe 1
(however, 2 V f.s.).
Add $\pm 0.05 \%$ rdg. $\pm 0.2 \%$ f.s. for current and active power when using Probe 2, and add $\pm 0.2^{\circ}$ to the phase at or above 10 kHz .
The accuracy figures for voltage, current, active power, and phase difference for 0.1 Hz to 10 Hz are reference values
 220 V from 10 Hz to 16 Hz are reference values.
750 V for values of f such that $30 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$ ase difference in excess of
The accuracy figures for voltage, active power, and phase difference in excess of $(22000 / f[\mathrm{kHz}]) \mathrm{V}$ for values of f such that $100 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$ are reference values. Add $\pm 0.02 \%$ rdg. for voltage and active power at or above 1000 V (however, figures are reference values)
Even for input voltages that are less than 1000 V , the effect will persist
until the input resistance temperature falls.
For voltages in excess of 600 V add the foll
difference accuracy
$-500 \mathrm{~Hz}<\mathrm{f} \leq 5 \mathrm{kHz}: \pm 0$
$-5 \mathrm{kHz}<f \leq 20 \mathrm{kHz}: \pm 0.5^{\circ}$
$-20 \mathrm{~Hz}<f \leq 200 \mathrm{kHz}: \pm 1^{\circ}$

Measurement parameters	Accuracy
Apparent power	Voltage accuracy + current accuracy ± 10 dgt.
Reactive power	$\begin{array}{\|l} \text { Apparent power accuracy }+ \\ \left(\sqrt{2.69 \times 10^{-4} \times f+1.0022-\lambda^{2}}-\sqrt{1-\lambda^{2}}\right) \times 100 \% \text { f.s. } \end{array}$
Power factor	$\begin{aligned} & \phi \text { of other than } \pm 90^{\circ}: \\ & \pm\left[1-\frac{\cos (\phi+\text { phase difference accuracy })}{\cos (\phi)}\right] \times 100 \% \text { rdg. } \pm 50 \text { dgt } \\ & \phi \text { of } \pm 90^{\circ}: \\ & \pm \cos (\phi+\text { phase difference accuracy }) \times 100 \% \text { f.s. } \pm 50 \text { dgt. } \end{aligned}$
Waveform peak	Voltage/current RMS accuracy $\pm 1 \%$ f.s. (f.s.: apply 300% of range)

$\mathrm{f}: \mathrm{kHz} ; \phi$: Display value for voltage/current phase difference;
f: kHz ; ϕ : Display value for volta
$\lambda:$ Display value for power factor
Add the following to the voltage, current, and active power accuracy within the ange of $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ or $26^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$:
For current and active power when using Probe $2, \pm 0.02 \%$ rdg. $/{ }^{\circ} \mathrm{C}$ (add 0.05% For current and active power
f.s. $/{ }^{\circ} \mathrm{C}$ for $D C$ measured values)
Under conditions of 60% RH or greater
Add $\pm 0.0006 \times$ humidity $[\% \mathrm{RH}] \times f[\mathrm{kHz}] \%$ rdg. to the voltage and active power accuracy. Add $\pm 0.0006 \times$ humidity $[\% \mathrm{RH}] \times \mathrm{f}[\mathrm{kHz}]^{\circ}$ for the phase difference.
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$: 100 dB or greater (when applied between the voltage 100 kHz : $\quad \begin{aligned} & \text { inputterminals and the enclosure) } \\ & 80 \mathrm{~dB} \text { or greater (reference value) }\end{aligned}$
Defined for CMRR when the maximum input voltage is applied for all measurement ranges.

mode voltage
 \section*{Effects of external}

magnetic fields

Effects of power factor
$\pm 1 \%$ f.s. or less (in a magnetic field of $400 \mathrm{~A} / \mathrm{m}, \mathrm{DC}$ or $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)
ϕ of other than $\pm 90^{\circ}$:
ϕ of $\pm 90^{\circ}$:
$\pm\left[1-\frac{\cos (\phi+\text { phase difference accuracy })}{\cos (\phi)}\right] \times 100 \%$ rdg.
$\pm \cos (\phi+$ phase difference accuracy $) \times 100 \%$ f.s.

Frequency measurement

Number of measurement channels	Max. 6 channels (f1 to f6), based on the number of input channels
Measurement source	Select from U/I for each connection.
Measurement method	Reciprocal method + zero-cross sampling value correction Calculated from the zero-cross point of waveforms after application of the zerocross filter.
Measurement range	0.1 Hz to 2 MHz (Display shows 0.00000 Hz or ----Hz if measurement is not possible.)
Accuracy	$\pm 0.01 \mathrm{~Hz} \quad$ (Only when measuring $45-66 \mathrm{~Hz}$ with a minimum measurement interval of 50 ms and sine input of at least 50% relative to the voltage range when measuring the voltage frequency.) $\pm 0.05 \%$ rdg ± 1 dgt. (other than the conditions mentioned above, when the sine wave is at least 30% relative to the measurement source's measurement range)
Display format	0.10000 Hz to $9.99999 \mathrm{~Hz}, \quad 9.9000 \mathrm{~Hz}$ to 99.9999 Hz , 99.000 Hz to $999.999 \mathrm{~Hz}, \quad 0.99000 \mathrm{kHz}$ to 9.99999 kHz , 9.9000 kHz to $99.9999 \mathrm{kHz}, 99.000 \mathrm{kHz}$ to 999.999 kHz , 0.99000 MHz to 2.00000 MHz

Integration measurement

Measurement modes	Select RMS or DC for each connection (DC mode can only be selected when using an AC/DC sensor with a 1P2W connection).
Measurement parameters	Current integration ($\mathrm{lh}+$, Ih-, Ih), active power integration (WP+, WP-, WP) $\mathrm{I} \mathrm{h}+$ and I h - are measured only in DC mode. Only I is measured in RMS mode.
Measurement method	Digital calculation based on current and active power values DC mode Every sampling interval, current values and instantaneous power values are integrated separately for each polarity. RMS mode The current RMS value and active power value are integrated for each measurement interval. Only active power is integrated separately for each polarity.
Display resolution	999999 (6 digits + decimal point), starting from the resolution at which 1% of each range is f.s.
Measurement range	0 to $\pm 9999.99 \mathrm{TAh} / \mathrm{TWh}$
Integration time	10 sec . to 9999 hr .59 min .59 sec .
Integration time accuracy	$\pm 0.02 \%$ rdg. ($0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$)
Integration accuracy	\pm (current or active power accuracy) \pm integration time accuracy
Backup function	None
Harmonics measurement	
Number of measurement channels	Max. 6 channels, based on the number of built-in channels
Synchronization source	Based on the synchronization source setting for each connection.
Measurement modes	Select from IEC standard mode or wideband mode (setting applies to all channels).
Measurement parameters	Harmonic voltage RMS value, harmonic voltage content ratio, harmonic voltage phase angle, harmonic current RMS value, harmonic current content ratio, harmonic current phase angle, harmonic active power, harmonic power content ratio, harmonic voltage/current phase difference, total voltage harmonic distortion, total current harmonic distortion, voltage unbalance ratio, current unbalance ratio
FFT processing word length	32 bits
Antialiasing	Digital filter (automatically configured based on synchronization frequency)
Window function	Rectangular
Grouping	OFF / Type 1 (harmonic sub-group) / Type 2 (harmonic group)
THD calculation method	THD_F / THD_R (Setting applies to all connections.) Select calculation order from 2nd order to 100th order (however, limited to the maximum analysis order for each mode).

(1) IEC standard mode

Measurement method		Zero-cross synchronization calculation method (same window for each synchronization source) Fixed sampling interpolation calculation method with average thinning in window IEC 61000-4-7:2002 compliant with gap overlap			
Synchronization frequency range		45 Hz to 66 Hz			
Data update rate		Fixed at 200 ms .			
Analysis orders		Oth to 50th			
Window wave number		When less than $56 \mathrm{~Hz}, 10$ waves; when 56 Hz or greater, 12 waves			
Number of FFT points		4096 points			
Accuracy	Frequency		Harmonic voltage and current	Harmonic power	Phase difference
	DC (0th order)		$\pm 0.1 \%$ rdg. $\pm 0.1 \%$ f.s.	$\pm 0.1 \%$ rdg. $\pm 0.2 \%$ f.s.	--
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$		$\pm 0.2 \%$ rdg. $\pm 0.04 \%$ f.s.	$\pm 0.4 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.08^{\circ}$
	$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$		$\pm 0.5 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 1.0 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.08^{\circ}$
	$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$		$\pm 0.8 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 1.5 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.4^{\circ}$
	$1 \mathrm{kHz}<\mathrm{f} \leq 2.5 \mathrm{kHz}$		$\pm 2.4 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 4 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.4^{\circ}$
	$2.5 \mathrm{kHz}<\mathrm{f} \leq 3.3 \mathrm{kHz}$		$\pm 6 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 10 \%$ rdg. $\pm 0.05 \%$ f.s.	$\pm 0.8^{\circ}$

Unit for f in accuracy calculations as mentioned in the table above: kHz
Power is defined for a power factor of 1.
Accuracy specifications are defined for fundamental wave input that is greater

than or equal to 50% of the range.
Add the current sensor accuracy to the above accuracy figures for current, active
power, and phase difference.
Add $\pm 0.02 \%$ rdg. for voltage and active power at or above 1000 V (however, figures are reference values).
Even for input voltages that are less than 1000 V , the effect will persist until the input resistance temperature falls.
(2) Wideband mode
(2) Zero-cross synchronization calculation method (same window for each

Measurement method	Zero-cross synchronization ca
synchronization source) with gaps	

Measurement method	$\begin{array}{l}\text { synchronization source) with gaps } \\ \text { Fixed sampling interpolation calculation method }\end{array}$
Synchronization	0.1 .1.

$\begin{array}{l}\text { Synchronization } \\ \text { frequency range }\end{array}$	0.1 Hz to 300 kHz
Data update rate	Fixed at 50 ms.

Data update rate	Fixed at 50 ms .					
Maximum analysis order and Window wave number		Frequency	Windo	wave number	Maximum analysis order	
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<80 \mathrm{~Hz}$			1		100th
	$80 \mathrm{~Hz} \leq \mathrm{f}<160 \mathrm{~Hz}$			2		100th
	$160 \mathrm{~Hz} \leq \mathrm{f}<320 \mathrm{~Hz}$			4		60th
	$320 \mathrm{~Hz} \leq \mathrm{f}<640 \mathrm{~Hz}$			2		60th
	$640 \mathrm{~Hz} \leq \mathrm{f}<6 \mathrm{kHz}$			4		50th
	$6 \mathrm{kHz} \leq \mathrm{f}<12 \mathrm{kHz}$			2		50th
	$12 \mathrm{kHz} \leq \mathrm{f}<25 \mathrm{kHz}$			4		50th
	$25 \mathrm{kHz} \leq \mathrm{f}<50 \mathrm{kHz}$			8		30th
	$50 \mathrm{kHz} \leq \mathrm{f}<101 \mathrm{kHz}$			16		15th
	$101 \mathrm{kHz} \leq \mathrm{f}<201 \mathrm{kHz}$			32		7th
	$201 \mathrm{kHz} \leq \mathrm{f} \leq 300 \mathrm{kHz}$			64		5th
Phase zero-adjustment	The instrument provides phase zero-adjustment functionality using keys or communications commands (only available when the synchronization source is set to Ext).					
Accuracy	Add the following to the accuracy figures for voltage (U), current (I), active power (P), and phase difference. (Unit for f in following table: kHz)					
Frequency		Harmonic voltage and current		Harmonic power		Phase difference
DC		$\pm 0.1 \%$ f.s.		$\pm 0.2 \%$ f.s.		-
		$\pm 0.05 \%$ f.s.		$\pm 0.05 \%$ f.s.		$\pm 0.1^{\circ}$
0.1 Hz $30 \mathrm{f}<30 \mathrm{~Hz}$		$\pm 0.1 \%$ f.s.		$\pm 0.2 \%$ f.s.		$\pm 0.1^{\circ}$
		$\pm 0.05 \%$ f.s.		$\pm 0.1 \%$ f.s.		$\pm 0.1^{\circ}$
$\frac{45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}}{66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}}$		$\pm 0.05 \%$ f.s.		$\pm 0.1 \%$ f.s.		$\pm 0.1^{\circ}$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$		$\pm 0.05 \%$ f.s.		$\pm 0.1 \%$ f.s.		$\pm 0.6^{\circ}$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$		$\pm 0.2 \%$ f.s.		$\pm 0.4 \%$ f.s.		$\pm(0.020 \times f)^{\circ} \pm 0.5^{\circ}$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$		$\pm 0.4 \%$ f.s.		$\pm 0.5 \%$ f.s.		$\pm(0.020 \times 1)^{\circ} \pm 1^{\circ}$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$		$\pm 1 \%$ f.s.		$\pm 2 \%$ f.s.		$\pm(0.030 \times f)^{\circ} \pm 1.5^{\circ}$
$500 \mathrm{kHz}<\mathrm{f} \leq$	\$900 kHz			$\pm 5 \%$ f.s.		$\pm(0.030 \times f)^{\circ} \pm 2^{\circ}$

Unit for f in accuracy calculations as mentioned in the table above: kHz
The figures for voltage, current, power,
excess of 300 kHz are reference values
xess or
Wor for voltage, current, power, and phase difference for frequencies other than the undamental wave are reference values.
信 or voltage, current, power, and phase difference in excess of 6 kHz are Aference values.
Accuracy values and current for the same order are at least 10% f.s.

Waveform recording

Number of measurement channels	Voltage and current waveforms Max. 6 channels (based on the number of installed channels) Motor waveforms * Max. 2 analog $D C$ channels + max. 4 pulse channels
Recording capacity	1 Mword \times ((voltage + current) \times max. 6 channels + motor waveforms) Fixed to 1 Mword when the number of channels is low. Motor waveforms: Motor analysis and D/A-equipped models only No memory allocation function
Waveform resolution	16 bits (Voltage and current waveforms use the upper 16 bits of the 18 -bit A/D.)
Sampling speed	Voltage and current waveforms Always $5 \mathrm{MS} / \mathrm{s}$ Motor waveforms * Always $50 \mathrm{kS} / \mathrm{s}$ (analog DC) Motor pulse ${ }^{*}$ Always $5 \mathrm{MS} / \mathrm{s}$
Compression ratio	1/1, $1 / 2,1 / 5,1 / 10,1 / 20,1 / 50,1 / 100,1 / 200,1 / 500$ ($5 \mathrm{MS} / \mathrm{s}, 2.5 \mathrm{MS} / \mathrm{s}, 1 \mathrm{MS} / \mathrm{s}, 500 \mathrm{kS} / \mathrm{s}, 250 \mathrm{kS} / \mathrm{s}, 100 \mathrm{kS} / \mathrm{s}, 50 \mathrm{kS} / \mathrm{s}, 25 \mathrm{kS} / \mathrm{s}, 10 \mathrm{kS} / \mathrm{s}$) However, motor waveforms* are only compressed at $50 \mathrm{kS} / \mathrm{s}$ or less.
Recording length	$1 \mathrm{kWord} / 5 \mathrm{kWord} / 10 \mathrm{kWord} / 50 \mathrm{kWord} / 100 \mathrm{kWord} / 500 \mathrm{kWord} / 1 \mathrm{Mword}$
Storage mode	Peak-to-peak compression or simple thinning
Trigger mode	SINGLE or NORMAL (with forcible trigger setting) When FFT analysis is enabled in NORMAL mode, the instrument enters trigger standby and waits for FFT calculations to complete.
Pre-trigger	0% to 100% of the recording length, in 10% steps
Trigger source	Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform*, motor pulse*
Trigger slope	Rising edge, falling edge
Trigger level	$\pm 300 \%$ of the range for the waveform, in 0.1% steps
Trigger detection method	Level trigger / Event trigger (1) Level trigger Detects the trigger based on fluctuations in the level of the storage waveform Trigger source: Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform, motor pulse (motor waveform and motor pulse: Motor analysis and D/A-equipped models only) Trigger slope: Rising edge, falling edge Trigger level: $\quad \pm 300 \%$ of the range for the waveform, in 0.1% steps (2) Event trigger Detects the trigger based on fluctuations in the value of the measuremen parameter selected for D/A output. Specifically, trigger detection conditions are set using OR and AND operations performed on the four events defined below. Note that the AND operator has precedence over the OR operator. Event: These condition definitions consist of a D/A output measurement parameter (D/A13 to D/A20), an inequality sign (< or >) , and a value (0.00000 to 999999T). EVm : D/AnロX.XXXXX y ($\mathrm{m}: 1$ to $4, \mathrm{n}: 13$ to 20 , \square : Inequality sign, $\mathrm{X} . \mathrm{XXXXX}$: 6 -digit constant, y : SI prefix)

FFT analysis

Measurement channel	Voltage-Current Waveform - 1 channel (selected from input channels) Motor Waveform - Analog DC Analysis performed only when FFT screen is displayed
Calculation type	RMS spectrum
Number of FFT points	1,000, 5,000, 10,000 or 50,000 points
FFT processing word length	32 bits
Analysis position	Any desired position among the waveform record data
Antialiasing	Automatic Digital Filter (during simple thinning mode) None (During Peak-Peak compression mode, use the Max value and perform FFT)
Window function	Rectangular/Hanning/Flat-top
Max. analysis frequency	Linked with compression ratio of waveform records. $2 \mathrm{MHz}, 1 \mathrm{MHz}, 400 \mathrm{kHz}, 200 \mathrm{kHz}, 100 \mathrm{kHz}, 40 \mathrm{kHz}, 20 \mathrm{kHz}, 10 \mathrm{kHz}$ or $4 \mathrm{kHz} / 20$ $\mathrm{kHz}, 10 \mathrm{kHz}$, or 4 kHz during analog DC input (Mentioned above frequency - frequency resolution) becomes the maximum analysis frequency
FFT peak value display	Compute 10 frequencies and voltage-current peak value levels (local maximum value) each starting from the top, ordered by level/For FFT calculation results, recognize as the peak value when the data on both sides is lower than the original data

Motor Analysis (PW6001-11 to -16 only)

(2) Frus Voltage $\pm 10 \%$ f.s., zero-correction of input offsets that are less
(2) Frequency input (CH A/CH B)

Detection level	Low: 0.5 V or less; high: 2.0 V or more
Measurement	(

$\begin{array}{l}\text { Measurement } \\ \text { frequency band }\end{array}$	0.1 Hz to 1 MHz (at 50% duty ratio)

Minimum detection width 0.5μ s or more

Measurement accuracy	$\pm 0.05 \%$ rdg. ± 3 dgt.
Dispar	

Display range	1.000 kHz to 500.000 kHz

(3) Pulse input (CH A / CH B / CH C / CH D)

Detection level	Low: 0.5 V or less; high: 2.0 V or more
Measurement	0.1 Hz to 1 MHz (at 50% duty ratio)

Measurement
frequency band
Minimum detection width
Pulse filter
Measurement accuracy
Display range
Frequency division
setting range
Rotation direction
detection
Mechanical angle
origin detection
0.1 Hz to 1 MHz (at 50% duty ratio)
$0.5 \mu \mathrm{~s}$ or more
OFF / Weak / Strong (When using the weak setting, positive and negative pulses
of less than $0.5 \mu \mathrm{~s}$ are ignored. When using the strong setting positive and of less than $0.5 \mu \mathrm{~s}$ are ignored. When using the strong setting, positive and
negative pulses of $5 \mu \mathrm{~s}$ are ignored.) negative pulses of $5 \mu \mathrm{~s}$ are ignored.)
0.1 Hz to 800.000 kHz
$\mathrm{Hz} / \mathrm{r} / \mathrm{min}$.
1~60000
Can be set in single mode (detected based on lead/lag of CH B and CH C).
Can be set in single mode (CH B frequency division cleared at $\mathrm{CH} D$ rising edge).

D/A output (PW6001-11 to -16 only)		
Number of output channels	20 channels	
Output terminal profile	D-sub 25 -pin connector $\times 1$	
Output details	- Switchable between waveform output and analog output (select from basic measurement parameters). - Waveform output is fixed to CH 1 to CH 12 .	
D/A conversion resolution	16 bits (polarity +15 bits)	
Output refresh rate	Analog output Waveform output	$10 \mathrm{~ms} / 50 \mathrm{~ms} / 200 \mathrm{~ms}$ (based on data update rate for the selected parameter) 1 MHz
Output voltage	Analog output Waveform output	± 5 V DC f.s. (max. approx. $\pm 12 \mathrm{~V}$ DC) Switchable between $\pm 2 \mathrm{~V}$ f.s. and $\pm 1 \mathrm{~V}$ f.s., crest factor of 2.5 or greater. Setting applies to all channels.
Output resistance	$100 \Omega \pm 5 \Omega$	
Output accuracy	Analog output Waveform output	Output measurement parameter measurement accuracy $\pm 0.2 \%$ f.s. (DC level) Measurement accuracy $\pm 0.5 \%$ f.s. (at $\pm 2 \mathrm{~V}$ f.s.) or $\pm 1.0 \%$ f.s. (at $\pm 1 \mathrm{~V}$ f.s.) (RMS value level, up to 50 kHz)
Temperature coefficient	$\pm 0.05 \%$ f.s. $/{ }^{\circ} \mathrm{C}$	

Display section

Display characters	English, Japanese, Chinese (simplified)
Display	$9 "$ WVGA TFT color LCD $(800 \times 480$ dots) with an LED backlight and analog resistive touch panel
Display value resolution	999999 count (including integration values)
Display refresh rate	Measured values Approx. 200 ms (independent of internal data update rate) When using simple averaging, the data update rate varies based on the number of averaging iterations. Based on display settings Waveforms

External interface

(1) USB flash drive interface

Connector	USB Type A connector $\times 1$
Electrical specifications	USB 2.0 (high-speed)
Power supplied	Max. 500 mA
Supported USB flash drives	USB Mass Storage Class compatible
Recorded data	- Save/load settings files - Save measured values/automatic recorded data (CSV format) - Copy measured values/recorded data (frrm internal memory) - Save waveform data, save screenshots (compressed BMP format)

(2) LAN interface

Connector	RJ-45 connector $\times 1$

| Electrical specifications | RJ-45 connector $\times 1$ |
| :--- | :--- | :--- |
| EEE 802.3 com | |

Transmission method	10Base-T/100Base-TX/1000Base-T (automatic detection)

Protocol	TCP/IP (with DHCP function)

Functions	$\begin{array}{l}\text { HTTP server (remote operations) } \\ \text { Dedicated port (data transferring, command control) } \\ \text { FTP server (file transferring) }\end{array}$

(3) GP-IB interface

(3) GP-IB interface	
Communication	IEEE 488.1 1987 compliant developed with reference to IEEE 488.2 1987 Interface functions: SH1, AH1, T6, L4, SR1, RL1, PPO, DC1, DT1, C0
method	O0 to 30
Addresses	Command control
Functions	

(4) RS-232C interface

Connector	D-sub 9-pin connector $\times 1,9$-pin power supply compatible, also used for external control
Communication	RS-232C, EIA RS-232D, CCITT V.24, and JIS X5101 compliant Full duplex, start stop synchronization, data length of 8, no parity, 1 stop bit
method	Hardware flow control ON/OFF
Flow control	Communications speed $, 600 \mathrm{bps} / 19,200 \mathrm{bps} / 38,400 \mathrm{bps} / 57,600 \mathrm{bps} / 115,200 \mathrm{bps} / 230,400 \mathrm{bps}$ FunctionsCommand control LR8410 Link supported (dedicated connector is required) Used through exclusive switching with external control interface

(5) External control interface

Connector	D-sub 9 -pin connector $\times 1,9$-pin power supply compatible, also used for RS-232C
Power supplied	OFF/ON (voltage of +5 V , max. 200 mA$)$
Electrical specifications	$0 / 5 \mathrm{~V}(2.5 \mathrm{~V}$ to 5 V$)$ logic signals or contact signal with terminal shorted or open
Functions	Same operation as the control panel UsTART/STOP] key or the Used through exclusive switching with RS-232C

(6) Two-instrument synchronization interface

Connector	SFP optical transceiver, Duplex-LC (2-wire LC)
Optical signal	850 nm VCSEL, 1 Gbps
Laser class	Class 1
Fiber used	$50 / 125 \mu \mathrm{~m}$ multi-mode fiber equivalent, up to 500 m
Functions	Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results.

Auto-range function

Functions	The voltage and current ranges for each connection are automatically changed in response to the input.
Operating mode	OFF/ON (selectable for each connection)
	Broad/ narrow (applies to all channels)
	Broad The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 110% f.s. The range is lowered by two if all RMS values for the connection are less than or equal to 10% f.s.
Auto-range breadth	Narrow The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 105% f.s. The range is lowered by one if all RMS values for the connection are less than or equal to 40% f.s. Voltage range changes when $\Delta-Y$ conversion is enabled are determined by multiplying the range by $\left[\frac{1}{\sqrt{3}}\right]$

Time control function

Timer control	OFF, 10 sec . to 9999 hr .59 min .59 sec . (in 1 sec. steps)
Actual time control	OFF, start time $/$ stop time $($ in $1 \mathrm{~min} . \mathrm{steps})$
Intervals	OFF $/ 10 \mathrm{~ms} / 50 \mathrm{mss} / 200 \mathrm{~ms} / 500 \mathrm{~ms} / 1 \mathrm{sec} . / 5 \mathrm{sec} . / 10 \mathrm{sec} . / 15 \mathrm{sec} . / 30 \mathrm{sec}$.
$1 \mathrm{~min} . / 5 \mathrm{~min} . / 10 \mathrm{~min} . / 15 \mathrm{~min} . / 30 \mathrm{~min} . / 60 \mathrm{~min}$.	

Hold function

Hold	Stops updating the display with all measured values and holds the value currently being displayed. Used exclusively with the peak hold function.
Peak hold	Updates the measured value display each time a new maximum value is set. Used exclusively with the hold function.

Calculation function

(1) Rectifier

Functions	Selects the voltage and current values used to calculate apparent and reactive power and power factor.						
Operating mode	RMS/mean (Can be selected for each connection's voltage and current.)						
(2) Scaling							
VT (PT) ratio	OFF/ 0.00001 to 9999.99						
CT ratio	OFF/ 0.01 to 9999.99						
(3) Averaging (AVG)							
Functions	All instantaneous measured values, including harmonics, are averaged.						
Operating mode	OFF / Simple averaging / Exponential averaging						
Operation							
Number of simple averaging iterations	Number of averaging iterations		5	10	20	50	100
	Data update rate	10 ms	50 ms	100 ms	200 ms	500 ms	1 sec .
		50 ms	250 ms	500 ms	1 sec .	2.5 sec .	5 sec .
		200 ms	1 sec .	2 sec .	4 sec .	10 sec .	20 sec .
Exponential averaging response rate	Setting			FAST			SLOW
	Data update rate		10 ms	0.1 sec .			5 sec .
			50 ms	0.5 sec .			25 sec .
			200 ms	2.0 sec .			100 sec .
	These values indicate the time required for the final stabilized value to converge on $\pm 1 \%$ when the input changes from 0% f.s. to 90% f.s.						
(4) User-defined calculations							
Functions	User-specified basic measurement parameters are calculated using the specified calculation formulas.						
Calculated items	Four basic measured items or constants with a maximum of 6-digits; operators are four-arithmetic operators. UDFn $=$ ITEM $1 \square$ ITEM $2 \square$ ITEM $3 \square$ ITEM 4 ITEMn : basic measured item, or constant of up to 6 digits ㅁ: any one of,,+- *, or / UDFn can also be selected for ITEMn, with calculations performed in the order of n. The functions that can be selected and calculated in regards to each ITEMn are as follows: neg, sin, cos, tan, sqrt, abs, log10 (common logarithm), log (logarithm), exp, asin, acos, atan, sinh, cosh, tanh When a UDFn with an n higher than the current UDF is encounted, previously calculated values are used						
Number of allowed calculations	16 formulas (UDF1 to UDF16)						
Maximum value setting	Set for each UDFn in the range 1.000μ to 100.0 T / Functions as a UDFn range						
Unit	Up to 6 characters in ASCII for each UDFn						
(5) Efficiency and loss calculations							
Calculated items	Active power value (P), fundamental wave active power (Pfnd), and motor power (Pm) (Motor Analysis and D/A-equipped models only) for each channel and connection						
Number of calculations that can be performed	Four each for efficiency and loss						
Formula	Calculated items are specified for $\operatorname{Pin}(n)$ and $\operatorname{Pout}(n)$ in the following format: Pin $=$ Pin1 + Pin2 + Pin $3+$ Pin4, Pout $=$ Pout1 + Pout $2+$ Pout3 + Pout 4 $\eta=100 \times \frac{\mid \text { Pout } \mid}{\mid \text { Pin } \mid}$, Loss $=\mid$ Pin\| $-\mid$ Pout \mid						
(6) Power formula selection							
Functions	Selects the reactive power, power factor, and power phase angle formulas.						
Formula	TYPE1 / TYPE2 / TYPE3 TYPE1 Compatible with TYPE1 as used by the Hioki 3193 and 3390. TYPE2 Compatible with TYPE2 as used by the Hioki 3192 and 3193. TYPE 3 The sign of the TYPE1 power factor and power phase angle are used as the active power signs.						
(7) Delta conversion							
Functions	$\Delta-Y \quad$ When using a 3P3W3M or 3V3A connection, converts the line voltage waveform to a phase voltage waveform using a virtual neutral point. Y- $\Delta \quad$ When using a 3P4W connection, converts the phase voltage waveform to a line voltage waveform. Voltage RMS values and all voltage parameters, including harmonics, are calculated using the post-conversion voltage.						
(8) Current sensor phase shift calculation							
Functions	Compensates the current sensor's harmonic phase characteristics using calculations.						
Compensation value settings	Compensation points are set using the frequency and phase difference. Frequency $\quad 0.1 \mathrm{kHz}$ to 999.9 kHz (in 0.1 kHz steps) Phase difference $\quad 0.00^{\circ}$ to $\pm 90.00^{\circ}$ (in 0.01° intervals) However, the difference in time calculated from the frequency phase difference can be up to $98 \mu \mathrm{~s}$ in 0.5 ns intervals						

Display function

(1) Connection confirmation screen

Functions
Displays a connection diagram and voltage and current vectors based on the selected measurement lines. The ranges for a correct connection are displayed on the vector display so that the connection can be checked. User can select to display the connection confirmation screen at startup (startup screen setting).
Simple settings
Commercial power supply / Commercial power supply high-resolution HD / DC / DC high-resolution HD/PWM / High-frequency / Low Power factor/ Other
(2) Vector display screen
Functions
Displays a connection-specific vector graph along with associated level values and phase angles.
(3) Numerical display screen
Functions
Display patterns
Displays power measured values and motor measured values for up to six
instrument channels.

(4) Harmonic display screen

Functions	Displays harmonic measured values on the instrument's screen.	
Display patterns	Display bar graph:	Displays harmonic measurement parameters for user- specified channels as a bar graph. Display list:
Displays numerical values for user-specified parameters		
and		

[^3]

General Specifications

Operating environment	Indoors at an elevation of up to 2000 m in a Pollution Level 2 environment
Storage temperature and humidity	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or less (no condensation)
Operating temperature and humidity	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or less (no condensation)
Dielectric strength	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ 5.4 kV rms AC for 1 min . (sensed current of 1 mA) Between voltage input terminals and instrument enclosure, and between current sensor input terminals and interfaces 1 kV rms AC for 1 min . (sensed current of 3 mA) Between motor input terminals (Ch. A, Ch. B, Ch. C, and Ch. D) and the instrument enclosure
Standards	Safety EN61010 EMC EN61326 Class A
Rated supply voltage	100 V AC to $240 \mathrm{VAC}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Maximum rated power	200 VA
External dimensions	Approx. 430 mm (16.93 in) $\mathrm{W} \times 177 \mathrm{~mm}$ (6.97 in) $\mathrm{H} \times 450 \mathrm{~mm}$ (17.72 in) D (excluding protruding parts)
Mass	Approx. 14 kg (49.4 oz) (PW6001-16)
Backup battery life	Approx. 10 years (reference value at $23^{\circ} \mathrm{C}$) (lithium battery that stores time and setting conditions)
Product warranty period	3 year
Guaranteed accuracy period	6 months (1-year accuracy $=6$-month accuracy $\times 1.5$)
Post-adjustment accuracy guaranteed period	6 months
Accuracy guarantee conditions	Accuracy guarantee temperature and humidity range: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or less Warm-up time: 30 min . or more
Accessories	Instruction manual x 1, power cord $\times 1$, D-sub 25-pin connector $\times 1$ (PW6001-1x only)

Other functions

Clock function	Auto-calendar, automatic leap year detection, 24 -hour clock
Actual time accuracy	When the instrument is on, ± 100 ppm; when the instrument is off, within ± 3 sec./day $\left(25^{\circ} \mathrm{C}\right)$
Sensor identification	Current sensors connected to Probe1 are automatically detected.
Zero-adjustment function	After the AC/DC current sensor's DEMAG signal is sent, zero-correction of the voltage and current input offsets is performed.
Touch screen correction	Position calibration is performed for the touch screen.
Key lock	While the key lock is engaged, the key lock icon is displayed on the screen.

Curn sensors
High-accuracy sensors: direct connection type (connect to Probe1 input terminal)
The newly developed DCCT method provides world-leading measurement bands and accuracy at a 50 A rating. Delivering a direct-coupled type current
testing tool that brings out the PW6001 POWER ANALYZER's maximum potential. (A 5 A-rated version is also available. Contact us for more information.)

Wiring connection example 1 -

 Existing direct-input connection method For more reliable wideband high-accuracy measurements. Use as an alternative to existing direct-input power meters. Use two PW910003 devices (the 3 ch models) for 6 -channel measurements

Wiring connection example 2 -

Introducing a new and innovative measuring method

Shorten the wiring for current measurement by installing the PW9100 close to the measurement target. This will also keep the effects of wiring resistance, capacity coupling and other objective factors on the measured values to a minimum.

All nev current sensor

The CT6904 delivers a measurement band that is $40 \times$ greater than the previous model along with high accuracy and a 500 A rating, making it a world-class current sensor that provides the ultimate level of performance when used in conjunction with the Power Analyzer PW6001. (The sensor is also available in an 800 A rated version. Please contact Hioki for details.)
$\mathbf{4 M H z}$ Measurement Range, $40 \times$ Conventional Models
Newly developed opposed split coil technology is used in winding (CT) areas, achieving a wide measurement range from $D C$ to 4 MHz .

High Noise Resistance Common-Mode Rejection Ratio (CMRR) of 120 dB or More ($\mathbf{1 0 0} \mathrm{kHz}$)
Completely shielding the sensor's opposed split coil with a solid shield featuring a proprietary shape lets the sensor deliver high accuracy measurement that is not affected by nearby voltages.

High-accuracy sensors: pull-through type (connect to Probe1 input terminal)

Model	AC/DC CURRENT SENSOR CT6862-05	$\begin{aligned} & \text { AC/DC CURRENT SENSOR } \\ & \text { CT6863-05 } \end{aligned}$	AC/DC CURRENT SENSOR CT6875, CT6875-01*1	AC/DC CURRENT SENSOR CT6876, CT6876-01*1	AC/DC CURRENT SENSOR CT6877, CT6877-01*1
Appearance					NEW
Rated current	$50 \mathrm{~A} \mathrm{AC/DC}$	200 A AC/DC	$500 \mathrm{~A} \mathrm{AC/DC}$	1000 A AC/DC	2000 A AC/DC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 2 MHz , DC to $1.5 \mathrm{MHz}{ }^{* 1}$	DC to 1.5 MHz , DC to $1.2 \mathrm{MHz}{ }^{* 1}$	DC to 1 MHz
Diameter of measurable conductors	Max. 24mm (0.94") $^{\text {(}}$	Max.¢ 24 mm (0.94")	Max. $\varphi 36 \mathrm{~mm}$ (1.42")	Max. $\varphi 36 \mathrm{~mm}$ (1.42")	Max. $\varphi 80 \mathrm{~mm}$ (3.15")
Basic accuracy	$\pm 0.05 \%$ rdg. $\pm 0.01 \%$ f.s. (amplitude) $\pm 0.2^{\circ}$ (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	$\pm 0.05 \%$ rdg. $\pm 0.01 \%$ f.s. (amplitude) $\pm 0.2^{\circ}$ (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	$\pm 0.04 \%$ rdg. $\pm 0.008 \%$ f.s. (amplitude) $\pm 0.1^{\circ}$ (phase, not defined for DC) (At DC and 45 Hz to 66 Hz)	$\pm 0.04 \%$ rdg. $\pm 0.008 \%$ f.s. (amplitude) $\pm 0.1^{\circ}$ (phase, not defined for $D C$) (At DC and 45 Hz to 66 Hz)	$\pm 0.04 \%$ rdg. $\pm 0.008 \%$ f.s. (amplitude) $\pm 0.1^{\circ}$ (phase, not defined for DC) (At DC and 45 Hz to 66 Hz)
Frequency characteristics (Amplitude)	$\begin{aligned} & \text { to } 16 \mathrm{~Hz}: \pm 0.1 \% \text { rdg. } \pm 0.02 \% \text { f.s. } \\ & 400 \mathrm{~Hz} \text { to } 1 \mathrm{kHz}: \pm 0.2 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s} \\ & \text { to } 50 \mathrm{kHz}: \pm 1.0 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s.} \\ & \text { to } 100 \mathrm{kHz}: \pm 2.0 \% \mathrm{rdg} . \pm 0.05 \% \mathrm{f.s} . \\ & \text { to } 1 \mathrm{MHz}: \pm 30 \% \text { rdg. } \pm 0.05 \% \text { f.s. } \end{aligned}$	$\begin{array}{r} 1016 \mathrm{~Hz}: \pm 0.1 \% \text { rdg. } \pm 0.02 \% \text { f.s. } \\ 400 \mathrm{~Hz} \text { to } 1 \mathrm{kHz}: \pm 0.2 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s} . \\ \text { to } 10 \mathrm{kHz}: \pm 1.0 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s} \\ \text { to } 100 \mathrm{kHz}: \\ \text { to } 500 \mathrm{kHz}: \pm 30 \% \text { rdg. } \pm 0.05 \% \mathrm{fts} . \pm 0.05 \% \mathrm{f.s} . \end{array}$	to $16 \mathrm{~Hz}: \pm 0.1 \%$ rdg. $\pm 0.02 \% \mathrm{fs}$. . 16 Hz to $45 \mathrm{~Hz}: \pm 0.05 \%$ rdg. $\pm 0.01 \% \mathrm{~F} . \mathrm{s}$. to $1 \mathrm{kHz}: \pm 0.2 \%$ rdg. $\pm 0.02 \% \mathrm{fs}$ s. to $10 \mathrm{kHz}: \pm 0.4 \% \mathrm{rdg} . \pm 0.02 \% \mathrm{fs}$. to $100 \mathrm{kHz}: \pm 2.5 \%$ rdg. $\pm 0.05 \%$ f.s. *1 to $1 \mathrm{MHz}: \pm(0.025 \mathrm{x} \mathrm{fkz}) \%$ rdg. $\pm 0.05 \%$ f.s.	to $16 \mathrm{~Hz}: \pm 0.1 \% \mathrm{rdg} . \pm 0.02 \% \mathrm{fs}$. 16 Hz to $45 \mathrm{~Hz}: \pm 0.05 \%$ rdg. $\pm 0.01 \%$ f.s. to $1 \mathrm{kHz}: \pm 0.2 \% \mathrm{rdg} . \pm 0.02 \% \mathrm{fs}$. to $10 \mathrm{kHz}: \pm 0.5 \%$ rdg. $\pm 0.02 \% \mathrm{fs}$. to $100 \mathrm{kHz}: \pm 3 \% \mathrm{rdg} . \pm 0.05 \% \mathrm{fs}$. ${ }^{* 1}$ to $1 \mathrm{MHz}: \pm(0.03 \times \mathrm{fkHz}) \%$ rdg. $\pm 0.05 \%$ f.s.	to $16 \mathrm{~Hz}: \pm 0.1 \mathrm{rdg} \% . \pm 0.02 \% \mathrm{fs}$. 16 Hz to $45 \mathrm{~Hz}: \pm 0.05 \% \mathrm{rdg} . \pm 0.01 \% \mathrm{f} . \mathrm{s}$. to $1 \mathrm{kHz}: \pm 0.2 \%$ rdg. $\pm 0.02 \%$ f.s. to $10 \mathrm{kHz}: \pm 0.5 \% \mathrm{rdg} . \pm 0.02 \% \% \mathrm{~s}$. to $100 \mathrm{kHz}: \pm 2.5 \%$ rdg. $\pm 0.05 \%$ f.s. ${ }^{* 1}$ to $700 \mathrm{kHz}: \pm(0.025 \mathrm{xf} \mathrm{kHz}) \%$ rdg. $\pm 0.05 \%$ f.s.
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Effect of conductor position	$\begin{gathered} \text { Within } \pm 0.01 \% \text { rdg. } \\ (50 \mathrm{~A}, \mathrm{DC} \text { to } 100 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { Within } \pm 0.01 \% \text { rdg. } \\ (100 \mathrm{~A}, \mathrm{DC} \text { to } 100 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Within } \pm 0.01 \% \text { rdg. } \\ (100 \mathrm{~A}, \mathrm{DC}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Within } \pm 0.01 \% \text { rdg. } \\ (100 \mathrm{~A}, \mathrm{DC}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Within } \pm 0.01 \% \text { rdg. } \\ (100 \mathrm{~A}, \mathrm{DC}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$
Effect of external magnetic fields	10 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	50 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	20 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	40 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	80 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)
Maximum rated voltage to earth	CAT III 1000 V ms	CAT III 1000 V rms	CAT III 1000 V rms	CAT IIII 1000 V ms	CAT III 1000 V rms
Dimensions	$\begin{gathered} 70 \mathrm{~W}\left(2.76^{\prime \prime}\right) \times 100 \mathrm{H}\left(3.94^{\text {" }}\right) \times \\ 53 \mathrm{D}\left(2.09^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~W}\left(2.76^{\prime \prime}\right) \times 100 \mathrm{H}\left(3.94^{\prime \prime}\right) \times \\ 53 \mathrm{D}\left(2.09^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 160 \mathrm{~W}\left(6.30^{\prime \prime}\right) \times 112 \mathrm{H}\left(4.41^{\prime \prime}\right) \times \\ 50 \mathrm{D}\left(1.97^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length [CT6875: } 3 \mathrm{~m}(9.84 \mathrm{ft}), \\ \text { CT6875-01:10 } \mathrm{m}(32.81 \mathrm{ft})] \\ \hline \end{gathered}$	$\begin{gathered} 160 \mathrm{~W}\left(6.30^{\prime \prime}\right) \times 112 \mathrm{H}\left(4.41^{\prime \prime}\right) \times \\ 50 \mathrm{D}\left(1.97^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length [CT6876: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \text {, } \\ \text { CT6876-01:10 }(32.81 \mathrm{ft})] \end{gathered}$	$\begin{gathered} 229 \mathrm{~W}\left(9.02^{\prime \prime}\right) \times 232 \mathrm{H}\left(9.13^{\prime \prime}\right) \times \\ 112 \mathrm{D}\left(4.44^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length [CT6877: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \text {, } \\ \text { CT6877-01:10 } \mathrm{m}(32.81 \mathrm{ft})] \end{gathered}$
Mass	$340 \mathrm{~g}(12.0 \mathrm{oz}$.	350 g (12.3 oz.)	$850 \mathrm{~g}\left(30.0\right.$ oz.), $1100 \mathrm{~g}(38.8 \mathrm{oz})^{* 1}$	$950 \mathrm{~g}(35.50 \mathrm{z}), 1250 \mathrm{~g}(44.1 \mathrm{oz})^{* 1}$	5 kg (176 40z), $5.3 \mathrm{~kg}(186.9 \mathrm{oz})^{\star 1}$
Derating properties					
Custom cable lengths also available. Please inquire with your Hioki distributor.			*1: Models CT6875-01, CT6876-01 and CT6877-01 have 10m cable lengths. When using these sensors, please add $\pm(0.005 \times \mathrm{fkHz}) \%$ rdg. to the amplitude accuracy and $\pm(0.015 \times f \mathrm{kHz})^{\circ}$ to the phase accuracy for frequency bandwidth $1 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$ ($1 \mathrm{kHz}<\mathrm{f} \leq 700 \mathrm{kHz}$ for the CT6877-01.)		

High-accuracy sensors: clamp type (connect to Probe1 input terminal)

Model	$\begin{aligned} & \text { AC/DC CURRENT PROBE } \\ & \text { CT6841-05 } \end{aligned}$	AC/DC CURRENT PROBE CT6843-05	AC/DC CURRENT PROBE CT6844-05	$\begin{aligned} & \text { AC/DC CURRENT PROBE } \\ & \text { CT6845-05 } \end{aligned}$	AC/DC CURRENT PROBE CT6846-05
Appearance					
Rated current	20 A AC/DC	200 A AC/DC	$500 \mathrm{~A} \mathrm{AC/DC}$	500 A AC/DC	1,000 A AC/DC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 200 kHz	DC to 100 kHz	DC to 20 kHz
Diameter of measurable conductors	Max. $\varphi 20 \mathrm{~mm}$ (0.79") (insulated conductor)	Max. p 20 mm (0.79") (insulated conductor)	Max. $\varphi 20 \mathrm{~mm}$ (0.79") (insulated conductor)	Max. 50 mm (1.97") (insulated conductor)	Max. $\varphi 50 \mathrm{~mm}$ (1.97") (insulated conductor)
Basic accuracy	$\begin{gathered} \pm 0.3 \% \text { rdg. } \pm 0.01 \% \text { f.s. (amplitude) } \\ \pm 0.1^{\circ}(\text { phase }) \\ (\mathrm{AtDC}<\mathrm{f} \leq 100 \mathrm{~Hz}) \\ \pm 0.3 \% \text { rdg. } \pm 0.05 \% \text { f.s. (amplitude) } \\ \text { (At DC) } \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.3 \% \text { rdg. } \pm 0.01 \% \text { f.s. (amplitude) } \\ \pm 0.1^{\circ} \text { (phase) } \\ \text { (At DC }<\mathrm{f} \leq 100 \mathrm{~Hz} \text {) } \\ \pm 0.3 \% \text { rdg. } \pm 0.02 \% \text { f.s. (amplitude) } \\ \text { (At DC) } \end{gathered}$	$\begin{gathered} \pm 0.3 \% \text { rdg. } \pm 0.01 \% \text { f.s. (amplitude) } \\ \pm 0.1^{\circ} \text { (phase) } \\ \text { (At DC }<\mathrm{f} \leq 100 \mathrm{~Hz}) \\ \pm 0.3 \% \text { rdg. } \pm 0.02 \% \text { f.s. (amplitude) } \\ \text { (At DC) } \end{gathered}$	$\begin{gathered} \pm 0.3 \% \text { rdg. } \pm 0.01 \% \text { f.s. (amplitude) } \\ \pm 0.1^{\circ} \text { (phase) } \\ \text { (At DC }<\mathrm{f} \leq 100 \mathrm{~Hz}) \\ \pm 0.3 \% \text { rdg. } \pm 0.02 \% \text { f.s. (amplitude) } \\ \text { (At DC) } \end{gathered}$	$\begin{gathered} \pm 0.3 \% \text { rdg. } \pm 0.01 \% \text { f.s. (amplitude) } \\ \pm 0.1^{\circ} \text { (phase) } \\ (\text { At DC }<\mathrm{f} \leq 100 \mathrm{~Hz}) \\ \pm 0.3 \% \text { rdg. } \pm 0.02 \% \text { f.s. (amplitude) } \\ \text { (At DC) } \end{gathered}$
Frequency characteristics (Amplitude)	$\begin{array}{\|ll} \text { to } 500 \mathrm{~Hz}: & \pm 0.3 \% \text { rdg. } \pm 0.02 \% \text { f.s. } \\ \text { to } 1 \mathrm{kHz}: & \pm 0.5 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s}, \\ \text { to } 10 \mathrm{kHz} & \pm 1.5 \% \text { rdg. } \pm 0.02 \% \mathrm{f.s} \\ \text { to } 100 \mathrm{kHz} & \pm 5.0 \% \text { rdg. } \pm 0.05 \% \text { f.s. } \\ \text { to } 1 \mathrm{MHz}: & \pm 30 \% \text { rdg. } \pm 0.05 \% \text { f.s. } \\ \hline \end{array}$	to 500 Hz $\pm 0.3 \%$ rdg. $\pm 0.02 \%$ f.s. to 1 kHz $\pm 0.5 \%$ rdg. $\pm 0.02 \%$ f.s. to 10 kHz $\pm 1.5 \%$ rdg. $\pm 0.02 \%$ f.s. to 50 kHz $\pm 5.0 \%$ rdg. $\pm 0.02 \%$ f.s. to $500 \mathrm{kHz}:$ $\pm 30 \%$ rdg. $\pm 0.05 \% \mathrm{f.s}$.	to $500 \mathrm{~Hz}:$ $\pm 0.3 \%$ rdg. $\pm 0.02 \%$ f.s. to $1 \mathrm{kHz}:$ $\pm 0.5 \%$ rdg. $\pm 0.02 \%$ f.s. to $10 \mathrm{kHz}:$ $\pm 1.5 \%$ rdg. $\pm 0.02 \%$ f.s. to $50 \mathrm{kHz}:$ $\pm 5.0 \%$ rdg. $\pm 0.02 \%$ f.s. to $200 \mathrm{kHz}:$ $\pm 30 \%$ rdg. $\pm 0.05 \%$ f.s.	to $500 \mathrm{~Hz}:$ $\pm 0.3 \%$ rdg. $\pm 0.02 \%$ f.s. to $1 \mathrm{kHz}:$ $\pm 0.5 \%$ rdg. $\pm 0.02 \% \mathrm{f.s}$. to $10 \mathrm{kHz}:$ $\pm 1.5 \%$ rdg. $\pm 0.02 \% \mathrm{f.s}$. to 20 kHz $\pm 5.0 \%$ rdg. $\pm 0.02 \%$ f.s. to $100 \mathrm{kHz}:$ $\pm 30 \%$ rdg. $\pm 0.05 \% \mathrm{f.s}$.	to $500 \mathrm{~Hz}:$ $\pm 0.5 \%$ rdg. $\pm 0.02 \%$ f.s. to $1 \mathrm{kHz}:$ $\pm 1.0 \%$ rdg. $\pm 0.02 \% \mathrm{f.s}$, to 5 kHz $\pm 2.0 \%$ rdg. $\pm 0.02 \% \mathrm{f.s}$ to 10 kHz $\pm 5.0 \%$ rdg. $\pm 0.05 \% \mathrm{f.s}$ to 20 kHz $\pm 30 \%$ rdg. $\pm 0.10 \% \mathrm{f.s}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Effect of conductor position	Within $\pm 0.1 \%$ rdg. (At $20 \mathrm{~A}, \mathrm{DC}$ to 100 Hz input)	Within $\pm 0.1 \%$ rdg. (At $100 \mathrm{~A}, \mathrm{DC}$ to 100 Hz input)	Within $\pm 0.1 \%$ rdg. (At $100 \mathrm{~A}, \mathrm{DC}$ to 100 Hz input)	Within $\pm 0.2 \%$ rdg. (At $100 \mathrm{~A}, \mathrm{DC}$ to 100 Hz input)	Within $\pm 0.2 \%$ rdg. (At $1000 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$ input)
Effect of external magnetic fields	50 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	50 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	100 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	150 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	150 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)
Dimensions	$\begin{gathered} \text { 153W }\left(6.02^{\prime \prime}\right) \times 67 \mathrm{H}\left(2.64^{\prime \prime}\right) \times \\ 25 \mathrm{D}\left(0.98^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { 153W }\left(6.02^{\prime \prime}\right) \times 67 \mathrm{H}\left(2.64^{\prime \prime}\right) \times \\ 25 \mathrm{D}\left(0.98^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 153\left(6.02^{\prime \prime}\right) \mathrm{W} \times 67\left(2.64^{\prime \prime}\right) \mathrm{H} \times \\ 25\left(0.98^{\prime \prime}\right) \mathrm{D} \mathrm{~mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 238\left(9.37^{\prime \prime}\right) \mathrm{W} \times 116\left(4.57^{\prime \prime}\right) \mathrm{H} \\ \times 35\left(1.38^{\prime \prime}\right) \mathrm{D} \mathrm{~mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 238\left(9.37^{\prime \prime}\right) \mathrm{W} \times 116\left(4.57^{\prime \prime}\right) \mathrm{H} \\ \times 35\left(1.38^{\prime \prime}\right) \mathrm{D} \mathrm{~mm} \\ \text { Cable length: } 3 \mathrm{~m}(9.84 \mathrm{ft}) \end{gathered}$
Mass	350 g (12.3 oz)	370 g (13.1 oz)	400 g (14.1 oz)	$860 \mathrm{~g} \mathrm{(30.3} \mathrm{oz)}$	990 g (34.9)
Derating properties	remerave				

Wide-band probes (connect to Probe2 input terminal)

Model	CLAMP ON PROBE	CLAMP ON PROBE 3274	CLAMP ON PROBE	CLAMP ON PROBE 3276
Appearance				
Rated current	30 A AC/DC	150 A AC/DC	500 A AC/DC	$30 \mathrm{~A} \mathrm{AC/DC}$
Frequency band	DC to $50 \mathrm{MHz}(-3 \mathrm{~dB})$	DC to $10 \mathrm{MHz}(-3 \mathrm{~dB})$	DC to $2 \mathrm{MHz}(-3 \mathrm{~dB})$	DC to $100 \mathrm{MHz}(-3 \mathrm{~dB})$
Diameter of measurable conductors	Max. $\varphi 5 \mathrm{~mm}$ (0.20") (insulated conductors)	Max. $\varphi 20 \mathrm{~mm}$ (0.79") (insulated conductors)	Max. $\varphi 20 \mathrm{~mm}$ (0.79") (insulated conductors)	Max. $\varphi 5 \mathrm{~mm}$ (0.20") (insulated conductors)
Basic accuracy	0 to $30 \mathrm{Arms} \pm 1.0 \% \mathrm{rdg} . \pm 1 \mathrm{mV}$ 30 A rms to 50 A peak $\pm 2.0 \%$ rdg. (At DC and 45 to 66 Hz)	0 to 150 A rms $\pm 1.0 \%$ rdg. $\pm 1 \mathrm{mV}$ 150 A rms to 300 A peak $\pm 2.0 \%$ rdg. (At DC and 45 to 66 Hz)	0 to 500 A rms $\pm 1.0 \%$ rdg. $\pm 5 \mathrm{mV}$ 500 A rms to 700 A peak $\pm 2.0 \%$ rdg. (At DC and 45 to 66 Hz)	0 to 30 A rms $\pm 1.0 \%$ rdg. $\pm 1 \mathrm{mV}$ 30 A rms to 50 A peak $\pm 2.0 \%$ rdg. (At DC and 45 to 66 Hz)
Operating temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Effect of external magnetic fields	20 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)
Dimensions	$175 \mathrm{~W}\left(6.89^{\prime \prime}\right) \times 18 \mathrm{H}\left(0.71^{\prime \prime}\right) \times 40 \mathrm{D}\left(1.57^{\prime \prime}\right) \mathrm{mm}$ Cable length: 1.5 m	$176 \mathrm{~W}\left(6.93^{\prime \prime}\right) \times 69 \mathrm{H}\left(2.72^{\prime \prime}\right) \times 27 \mathrm{D}\left(1.06^{\prime \prime}\right) \mathrm{mm}$ Cable length: 2 m	$\begin{gathered} 176 \mathrm{~W}\left(6.93^{\prime \prime}\right) \times 69 \mathrm{H}\left(2.72^{\prime \prime}\right) \times 27 \mathrm{D}\left(1.06^{\prime \prime}\right) \mathrm{mm} \\ \text { Cable length: } 2 \mathrm{~m} \end{gathered}$	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m
Mass	$230 \mathrm{~g}(8.1 \mathrm{oz})$	$500 \mathrm{~g}(17.6 \mathrm{oz})$	$520 \mathrm{~g} \mathrm{(18.3} \mathrm{oz)}$	$240 \mathrm{~g}(8.5 \mathrm{oz})$
Derating properties				

Model	CURRENT PROBE CT6700	CURRENT PROBE CT6701
Appearance		
Rated current	5 A AC/DC	5 A AC/DC
Frequency band	DC to $50 \mathrm{MHz}(-3 \mathrm{~dB})$	DC to $120 \mathrm{MHz}(-3 \mathrm{~dB})$
Diameter of measurable conductors	Max. 55 mm (0.20") (insulated conductors)	Max. 5 mm (0.20") (insulated conductors)
Basic accuracy	$\begin{gathered} \text { typical } \pm 1.0 \% \text { rdg. } \pm 1 \mathrm{mV} \\ \pm 3.0 \% \text { rdg. } \pm 1 \mathrm{mV} \\ \text { (At DC and } 45 \text { to } 66 \mathrm{~Hz} \text {) } \end{gathered}$	$\begin{gathered} \text { typical } \pm 1.0 \% \text { rdg. } \pm 1 \mathrm{mV} \\ \pm 3.0 \% \text { rdg. } \pm 1 \mathrm{mV} \\ \text { (At DC and } 45 \text { to } 66 \mathrm{~Hz} \text {) } \end{gathered}$
Operating temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Effects of external magnetic fields	20 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)	5 mA equivalent or lower ($400 \mathrm{~A} / \mathrm{m}, 60 \mathrm{~Hz}$ and DC)
Dimensions	$155 \mathrm{~W}\left(6.10^{\prime \prime}\right) \times 18 \mathrm{H}\left(0.71^{\prime \prime}\right) \times 26 \mathrm{D}\left(1.02^{\prime \prime}\right) \mathrm{mm}$ Cable length: 1.5 m	$155 \mathrm{~W}\left(6.10^{\prime \prime}\right) \times 18 \mathrm{H}\left(0.71^{\prime \prime}\right) \times 26 \mathrm{D}\left(1.02^{\prime \prime}\right) \mathrm{mm}$ Cable length: 1.5 m
Mass	$250 \mathrm{~g}(8.8 \mathrm{oz})$	250 g (8.8 oz)
Derating properties		

Sensor switching method

High accuracy sensor terminal: Slide the cover to the left. When connecting CT6862-05, CT6863-05, CT6904, CT6875, CT6876, CT6877 CT6841-05, CT6843-05, CT6844-05, CT6845-05, CT6846-05, PW9100-03, PW9100-04

Wideband probe terminal: Slide the cover to the right. When connecting 3273-50, 3274, 3275, 3276, CT6700 or CT6701

Model：POWER ANALYZER PW6001

Model No．（Order Code）	Number of built－in channels	Motor Analysis \＆D／A Output
PW6001－01	1ch	-
PW6001－02	2ch	-
PW6001－03	3ch	-
PW6001－04	4 ch	-
PW6001－05	5ch	-
PW6001－06	6ch	-
PW6001－11	1ch	\checkmark
PW6001－12	2ch	\checkmark
PW6001－13	3ch	\checkmark
PW6001－14	4ch	\checkmark
PW6001－15	5ch	\checkmark
PW6001－16	6ch	\checkmark

Accessories：Instruction manual $\times 1$ ，power cord $\times 1$ ，D－sub 25－pin connector（PW6001－11 to－16 only）$\times 1$

PW6001－16（with 6 channels and Motor Analysis \＆D／A Output
－The optional voltage cord and current sensor are required for taking measurements．
－Specify the number of built－in channels and inclusion of Motor Analysis \＆D／A Output upon order for factory installation．These options cannot be changed or added at a later date．

Model	Model No．（Order Code）	Note	Model	Model No．（Order Code）	Note
AC／DC CURRENT SENSOR	CT6862－05	（50A）	CLAMP ON PROBE	3273－50	（30A）
AC／DC CURRENT SENSOR	CT6863－05	（200A）	CLAMP ON PROBE	3274	（150A）
AC／DC CURRENT SENSOR	CT6904	（500A）	CLAMP ON PROBE	3275	（500A）
AC／DC CURRENT SENSOR	CT6875	（500A）	CLAMP ON PROBE	3276	（30A）
AC／DC CURRENT SENSOR＊1	CT6875－01	（500A）	CURRENT PROBE	CT6700	（5A）
AC／DC CURRENT SENSOR	CT6876	（1000A）	CURRENT PROBE	CT6701	（5A）
AC／DC CURRENT SENSOR＊1	CT6876－01	（1000A）	CONVERSION CABLE CT9900 HIOKI PL23（10 pin）to HIOKI ME15W（12 pin）connector For use with CT6862，CT6863，CT6841，CT6843，CT6844，CT6845， CT6846．		
AC／DC CURRENT SENSOR	CT6877	(2000A)			
AC／DC CURRENT SENSOR＊1	CT6877－01	（2000A）			
AC／DC CURRENT PROBE	CT6841－05	（20A）			
AC／DC CURRENT PROBE	CT6843－05	（200A）	SENSOR UNIT CT9557 Merges up to four current sensor output waveforms on a single channel，for output to PW6001．		
AC／DC CURRENT PROBE	CT6844－05	（500 A，ф20 mm）			
AC／DC CURRENT PROBE	CT6845－05	（500 A，¢50 mm）			
AC／DC CURRENT PROBE	CT6846－05	（1000 A）	1 m cable；required to connect the PW6001 to the CT9557＇s addition waveform output terminal．		
AC／DC CURRENT BOX	PW9100－03	（50 A， 3 ch ）			
AC／DC CURRENT BOX	PW9100－04	（50 A， 4 ch ）			

Voltage measurement options
 VOLTAGE CORD L9438－50
1000 V specifications，Black／ Red， 3 m （ 9.84 ft ）length， Alligator clip $\times 2$

CATIV 600 V, CATIII 1000 V

VOLTAGE CORD

 L10001000 V specifications，Red／ Yellow／Blue／Gray each 1，Black 4， Alligator clip $\times 8,3 \mathrm{~m}(9.84 \mathrm{ft})$ length

CATIV 600V，CATIII 1000V CONNECTION CORD L9257
1000 V specifications，red／ black $\times 1$ ea．， 1.2 m length

Connection options

CONNECTION CORD L9217

For motor signal input，cord has insulated BNC connectors at both ends， $1.6 \mathrm{~m}(5.25 \mathrm{ft})$ length

GP－IB CONNECTOR CABLE 9151－02
$2 \mathrm{~m}(6.56 \mathrm{ft})$ length

LAN CABLE 9642
Straight Ethernet cable，supplied with straight to cross conversion adapter， $5 \mathrm{~m}(16.41 \mathrm{ft})$ length

CONNECTION CABLE 9444
For external control interface， 9 pin－ 9 pin straight， $1.5 \mathrm{~m}(4.92 \mathrm{ft})$ length

RS－232C CABLE 9637
For the PC， 9 pins－ 9 pins， cross， $1.8 \mathrm{~m}(5.91 \mathrm{ft})$ length

OPTICA

For synchronized control，50／125 $\mu \mathrm{m}$ wavelength multimode fiber， 10 m （ 32.81 ft ）length

GRabber clip L9243
Attaches to the tip of the banana plug cable，Red／Black： 1 each， $185 \mathrm{~mm}(7.28 \mathrm{in})$ length

CATIV 600V，CATIII 1000 V РATCH CORD

Banana branch to banana clip，for branching voltage input， 0.5 m length

Other

The following made－to－order items are also available． Please contact your Hioki distributor or subsidiary for more information．
－Carrying case（hard trunk，with casters）
－D／A output cable，D－sub 25－pin－BNC（male）， 20 ch conversion， $2.5 \mathrm{~m}(8.20 \mathrm{ft})$ length
－Bluetooth® serial converter adapter cable $1 \mathrm{~m}(3.28 \mathrm{ft})$ －Rackmount fittings（EIA，JIS）
Optical connection cable，Max． 500 m（1640．55 ft）length
－PW9100 5 A rated version，CT6904 800 A rated version

Note：Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies．

HIOKI E．E．CORPORATION

HEADQUARTERS

81 Koizumi，
Ueda，Nagano 386－1192 Japan
https：／／www．hioki．com／

回保路

[^0]: *AAF (Anti-aliasing filter): This filter prevents aliasing errors during sampling.

[^1]: ' A low power factor measurement (LOW PF) mode for easily setting reactor and transformer loss measurement has been added.

[^2]: -During waveform output, accurate reproduction is possible at an output of $1 \mathrm{MS} / \mathrm{s}$ and with a sine wave up to 50 kHz .

[^3]: (5) Waveform display screen

 Functions \quad Displays the voltage and current waveforms and motor waveform. | Display patterns | $\begin{array}{l}\text { All-waveform display, waveform + numerical display } \\ \text { Cursor measurement supported }\end{array}$ |
 | :--- | :--- |

