

Input Specification
AC Voltage (AC-coupled true RMS measurement)

Code No.	Input signal	Input resistance	Input allowable range
1	0 to 35 V AC	More than 200k Ω	less than 150\% (The upper limit 300V AC)
2	0 to 100 V AC	More than $1 \mathrm{M} \Omega$	
3	0 to 110 V AC		
4	0 to 200 V AC		
5	0 to 220 V AC		
Y	Other th	n the above	

For Code No. Y
Limit of specifications
Less than 300 V AC and more than 0 V AC
Span : Less than 300 V AC and more than 4 V AC Input frequency: 40 to 1000 Hz
Note : A measurement error may become larger when higher harmonic wave components of more than input frequency are contained.

Output Specification

Code No.	Output signal	Allowable Loadresistance
0	0 to 5V DC	More than $2 \mathrm{k} \Omega$
1	1 to 5V DC	
2	0 to 10 V DC	More than $4 \mathrm{k} \Omega$ Negative output:more than $10 \mathrm{k} \Omega$
3	-10 to 10V DC	
4	-2 to 2VDC	More than $2 \mathrm{k} \Omega$ Negative output:more than $10 \mathrm{k} \Omega$
5	-2.5 to 2.5VDC	
6	-5 to 5VDC	
7	0 to 4VDC	More than $2 \mathrm{k} \Omega$
A	4 to 20mADC	Less than 550Ω
B	0 to 20mADC	
Y	Other than the above	

For code No. Y
Limit of specifications
Voltage output : Less than +15 VDC and more than -12 VDC Minimum span : Less than +27 VDC and more than 0.06 VDC (Road resistance : $10 \mathrm{k} \Omega$ at the output exceeding 10 V , and a negative output) (Base accuracy : $\pm 0.25 \%$ F.S and temperature characteristic : $\pm 0.03 \%$ F.S $/{ }^{\circ} \mathrm{C}$ for a span of less than 1 V)
Current output: Less than +20 mADC and more than 0 mADC Minimum span : Less than +20 mADC and more than 1 mADC Outputs can be reversed for both voltage and current outputs.

- General Specifications

BaseAccuracy:

$\pm 0.2 \%$ F.S (5 to $100 \% \mathrm{~F} . \mathrm{S}$) $\left(25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\right.$) $\pm 1.0 \%$ F.S (0 to $5 \% \mathrm{~F} . \mathrm{S}$) $\left(25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\right.$)
Power supply variation : $\pm 0.06 \%$ F.S ($\pm 0.5 \%$ to the input of 0 to 5%)
Load resistance variation : ± 0.06 \%F.S
Frequency variation :
$\pm 0.2 \%$ F.S (Based on 60 Hz)
Temperature characteristic : $\pm 0.02 \% \mathrm{~F} . \mathrm{S} /{ }^{\circ} \mathrm{C}$
Response time :
Front adjustments :
Insulation resistance :
Dielectric strength :
Power supply voltage :
Consuming current :
Less than $700 \mathrm{msec}(0 \rightarrow 90 \%)$ $\pm 5 \%$ for zero and span Between input and output/power supply ; More than $100 \mathrm{M} \Omega$ at 500 VDC Between input and output/power supply ; For 1 min. at 2000VAC 100 to $240 \mathrm{VAC} \pm 10$ \% Less than 20 mA (100VAC at voltage output) Less than 30 mA (100VAC at current output)
Operating ambient temperature : -5 to $50^{\circ} \mathrm{C}$
Operating ambient humidity : Less than 90 \%RH (No-condensing)

Storage temperature :
Storage humidity : Case material :
Weight :
Vibration resistance :

Less than 60\%RH (No-condensing) ABS resin(Black) $94 \mathrm{~V}-2$ Approx. 80g
Frequency: 10 to 55 Hz ; ampliutde(half): 0.15 mm to 10 sweeps of 5 min each in X, Y, and Z directions

- Features
- AC power supply 90 VAC to 240 VAC
- DIN rail mounting
- Input/Output/Power supply isolated

■ Ordering Code

■ Dimensions

Connection Diagram

Block Diagram

