

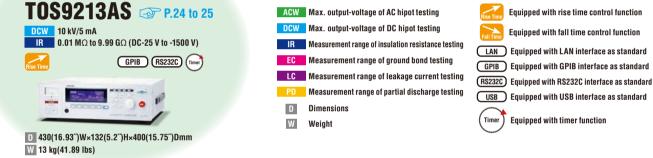
ELECTRICAL SAFETY TESTERS

www.kikusui.co.jp

Hipot Testers Insulation Resistance Testers Partial Discharge Testers Ground Bond Testers Leakage Current Testers

TOS SERIES

TOS SERIES SELECTION GUIDE


ELECTRICAL SAFETY TESTER

High-End Multi-type Hipot, insulation resistance, ground bond, leakage or partial

Hipot Tester with Insulation Resistance Test

High-performance type suitable for R&D, quality assurance, and automatic testing systems

Hipot Tester

Standard Standard type suitable for production and inspection lines

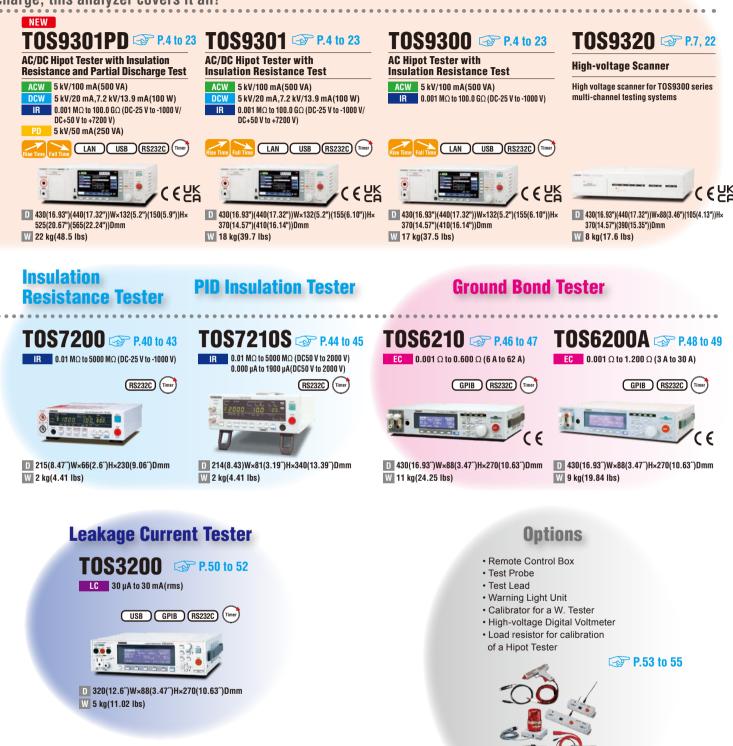
TOS5301 @ P.26 to 31

ACW 5 kV/100 mA(500 VA) DCW 6 kV/10 mA(500 W)

D 320(12.60[°])W×132(5.2[°])H×350(13.78[°])Dmm W 15 kg(33.1 lbs)

TOS5101 P.38 to 39

ACW 10 kV/50 mA(500 VA) DCW 10 kV/5 mA


D 430(16.93'')W×177(6.97'')H×370(14.57'')Dmm W 21 kg(46.3 lbs)

TOS5300 I P.26 to 31

ACW 5 kV/100 mA(500 VA)

D 320(12.60[°])W×132(5.2[°])H×350(13.78[°])Dmm W 14 kg(30.9 lbs) discharge, this analyzer covers it all!

The Electrical Appliance & Material Safety Low (Japan), UL (U.S.A.), CSA (Canada), VDE (Germany) and BS (U.K) are some major examples of safety standards in use throughout the world that require the performing of hipot testing. For this reason, it is necessary to confirm for what portion of what standard testing is to be performed when purchasing a hipot tester. Although the 500 VA capacity hipot testers available from KIKUSUI can basically be applied to tests specified in all safety standards, we recommend that you consult with us prior to purchase in order to select the model that best matches your specific application.

For the withstanding test and the insulation resistance test of the EUT (Equipment Under Test) with turned on electricity.

Our Hipot Testers and Insulation Resistance Testers are designed to test the EUT (Equipment Under Test) with turned off electricity. In case the test requires the EUT (Equipment Under Test) with turned on electricity, please contact with our distributor or agent.

Electrical Safety Multi-analyzer

Hipot, Insulation Resistance, Ground Bond, Leakage or Partial Discharge, this analyzer covers it all!

TOS9303LC

TOS9303LC

TOS9300(ACW/IR) TOS9301(ACW/DCW/IR) TOS9301PD(ACW/DCW/IR/PD) NEW TOS9302(ACW/EC) TOS9303(ACW/DCW/IR/EC) TOS9303LC(ACW/DCW/IR/EC/LC)

The TOS9300 series is a high performance electrical safety analyzer that complies to a wide range of universal standards. Hipot, Insulation Resistance, Ground Bond, Leakage Current (touch current and protective conductor current) and partial discharge can all be tested. A total of 6 models are available for standard compliance tests in a wide variety of applications including R&D, quality assurance manufacturing lines and laboratory tests.

- All-in-one safety tester model (TOS9303LC)
- Insulation diagnosis available with partial discharge model (TOS9301PD [NEW])
- New amplifier type allows for 40 A AC/DC ground bond testing (Ground bond tester models)
- Electrical breakdown inspection setting available
- AC5 kV/100 mA, DC7.2 kV/100 W Hipot test
- Touch current/protective conductor current/leakage current testing (TOS9303LC)
- LAN/USB/RS232C standard digital interface
- Easy to read LCD display for real time monitoring during tests, All measurement values and standard outlines displayed in each test
- High voltage scanner capable of output distribution both standalone and when connected with existing withstanding voltage/insulation resistance testing equipment models [TOS5300 series, etc.] (TOS9320)

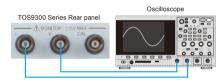
Electrical Safety Multi-analyzer

Basic performance

Color LCD Screen for Improved Visibility!

A brand-new 7-inch LCD display allows for easy access to your custom settings, standard outlines and blueprints for easy operation. (See Exterior Design P4)

User-Friendly 10Key Configuration


The TOS9300 series has included a user-friendly keypad in addition to the basic rotary knob for easy setting configuration. The front panel USB interface also allows for direct control via keyboard.* *106/109 Japanese keyboards and 101/104 English keyboard compliant.

Easy Firmware Updates via USB

System firmware can easily be updated via USB memory with update files directly accessible from our website. (https://www.kikusui.co.jp/en/download/)

I/V Monitor Terminal (Analog Monitor)

Signal outputs on the rear panel I/V terminal allow the user to monitor current/voltage waveforms during hipot tests with only an oscilloscope. Current sensors and high voltage probes not required.

Can connect with an oscilloscope using a BNC cable *There is no BNC cable option available. Users need to acquire a BNC cable themselves.

Universal Input Support

Global Support

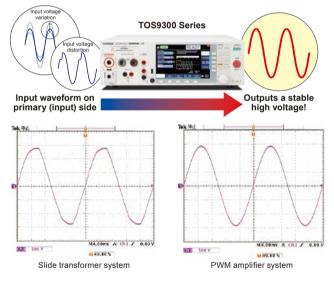
TOS9300 Series supports universal input for varying input voltages around the world.

Programmable Output Frequency Stable output frequency not dependent on input power source. Testing voltage is supplied at a stable 50/60Hz frequency.

Supports testing for partial discharge (TOS9301PD)

By observing minute partial discharges, it is possible to detect deterioration inside the insulation and "potential defects" that can affect the life of the insulation, which cannot be detected by the withstand voltage test.

STATUS OUT Connector


Signals from the rear panel STATUS connector automatically activate the optional warning light (PL02A-TOS) during high voltage output or unsafe test conditions. (See Application P9 and Specification P18)

High Precision/High Resolution/High Speed

The TOS9300 is equipped with a highly accurate, high resolution RMS measurement circuit with a voltmeter of $\pm (1.2\% \text{ of reading } +5 \text{ V})/$ minimum resolution 0.1 V and an ammeter of \pm (1% of reading +2 μ A)/ minimum resolution 1 μ A. The series also supports an auto range function, ensuring similar accuracy in both the upper and lower limit measurements that can accurately detect connection problems in the test lead. This combined with a measurement speed of 0.1s allows for reliable testing with high accuracy and resolution.

AC Hipot Testing with Stable Output [Input Voltage Variation: ±0.3%]

Conventional hipot testers utilize a slide transformer to output AC line voltage. This design is susceptible to input voltage fluctuation, with outside electrical influence affecting the test results. This can result in distorted voltage being applied to the EUT which can cause product malfunctions down the line due to component malfunction. The TOS9300 series utilizes a highly efficient PWM amplifier capable of stable high-voltage output that is unaffected by changes in the AC power line. The TOS9300 series allows for safe, stable, and highly reliable tests regardless of AC power line instability.

Test items

Model	AC Withstanding Voltage (AC Hipot)	DC Withstanding Voltage (DC Hipot)	Insulation Resistance	Earth Continuity (Ground Bond)	Leakage Current	Partial Discharge
T0\$9300	•		•			
T0\$9301	•	•	•			
TOS9301PD NEW	•	•	•			•
T0\$9302	•			•		
T0\$9303	•	•	•	•		
TOS9303LC	•	•	•	•	•	

Electrical Safety Multi-analyzer

Basic performance

Automatic Testing Feature

Tests can be combined and configured to execute automatically over long periods of time. Automotic tests are composed of programs and steps, which can be configured to initiate one after another.

Program schematic

Step 1		Step 2			Step 3		
ACW te	st		DCW test		IR test		
Program							
	Maximum nu of prograr		Maximum number of steps *1		cuted under rnal control	Changing the program name	
Program memory (except LC tests)	100		100		-	\checkmark	
Program memory (LC tests only) *2	100		100	-		\checkmark	
	Maximum nu of prograr		Maximum number of steps *1		cuted under rnal control	Changing the program name	
External control program memory (except LC tests)	25		100	\checkmark		-	
External control Program memory (LC tests only) *2	24		100		~	-	

*1 Per program *2 TOS9303LC only

Contact/Protective Conductor/Patient Leakage Current Test (TOS9303LC)

The TOS9300 series can conduct leakage current (patient current) tests for highly sensitive medical devices. Measurement networks can be easily configured via the front panel. (See Applications P8, Specifications P19)

All Electrical Safety Standard Tests inOne Device! (TOS9303LC)

The TOS9303LC is the "all-rounder" model which supports AC/DC withstanding voltage, insulation resistance, AC/DC earth continuity and leakage currents tests in a single device. It can also be used for contact current, protective conductor current and patient leakage current tests.

Programmable Detection Response Speed

Conventional withstanding voltage testers are generally used to only detect insulation breakdown, and cannot make judgements on instantaneous discharge currents like partial discharge. However, the TOS9300 series is equipped with 5 levels of response speed settings to accurately detect low levels of insulation breakdown. Small discharges not visible to conventional withstanding voltage testers are easily detected with the TOS9300 series.

Value		Description
LPF	Slow	Mean-value response type current detector. This is similar to the current detection response of Kikusui's general-purpose AC withstanding voltage testers. This setting is suitable for detecting dielectric breakdown defined in safety standards and for general hipot tests for general electronic devices and components. This setting is not recommended for detecting corona discharge, which is not considered dielectric breakdown by typical safety standards.
	Medium	Mean-value response type faster than SLOW setting. Upper limit judgement
	Fast	detection is much faster, suitable for withstanding voltage tests on compact electronic components and other EUTs prone to dielectric breakdown. Instantaneous discharges such as corona discharges with high frequencies are detected which may not be suitable for simple withstanding voltage tests.
HPF	Slow	Extremely small discharges such as corona discharges are detected but with
nrf	Fast	low reproductibility.

Basic Memory Function

In addition to automatic testing memory functions, up to 51 basic setting conditions and testing modes can be selected and saved to the main unit or USB memory. Easy testing with no hassle!

Positive Electrode/Negative Electrode Insulation Resistance Testing

Testing voltage from -25 V to -1000 V, +50 V to +7200 V, with a setting resolution is 1 V. Insulation resistance can be tested up to 99.99 G Ω . This makes for easy IEC61730-2 standard PV (solar battery) module insulation resistance testing. (See Application P9)

Electric Discharge Function

A discharge feature enables discharge of electrical energy from the DUT after DC hipot and insulation resistance tests have completed. The setting range for discharge time is between 0.0s - 100.0s.

AC/DC Earth Continuity Testing up to 40 A

Cutting edge amp technology allows for a wide range of applications, including general AC earth conduction testing and EV/PHV system DC earth continuity testing. This also allows for strict adherence to automotive DC standard requirements; expected to increase in the near future.

EARTH FAULT Protection

Mistakenly changing the grounding (GND) setting to "guard" (floating) can result in grounding the test subject which can result in unwanted leakage current emissions from the high voltage output site into the grounding site, resulting in electric shock to the operator. The EARTH FAULT protection function blocks output and terminates the test; eliminating any risk of electric shock and maximizing safety for the operator.

Offset Cancel

The Offset Cancel feature allows the user to eliminate electrical current found in the insulation resistance and stray capacitance among the output cables (only resistance for DC testing). This feature is available in all testing modes for AC withstanding voltage, DC withstanding voltage, insulation resistance, earth continuity and electrical current leakage tests.

Rise Time/Fall Time Control Function

The rise time control function prevents unnecessary stress from being applied to the EUT.

The rise time control feature allows you to gradually increase voltage to a set value while AC/DC hipot tests are conducted.Voltage rise times can be set from 0.1s to 200.0s at a resolution of 0.1s.

• Fall time control function

The fall time control feature allows you to gradually decrease the test voltage after a successful AC/DC hipot test. The voltage fall time can be set from 0s to 200s at a resolution of 0.1s. (OFF is also selectable).

7.2 kV/100 W DC Hipot Test

Capable of performing DC Hipot tests up to 7.2 kV utilizing a stable DC/DC converter with low-ripple and load variation of 1% and below.

Electrical Safety Multi-analyzer

Interfaces

SIGNAL I/O Connector

The rear panel also has a SIGNAL I/O that can start/stop operation as well as output signals.

TOS9300 example (The SIGNAL I/O connector is the same on all models.)

(<u></u> 37	connector pin numb	
	1	(W)	
Pin no.	IN/OUT	Signal name	Description
1	IN	INTERLOCK+	Activate/release interlock.
2		COM	Circuit common (chassis potential) shared by input and output.
3	IN	PM0	Sincer common (chassis potential) shared by input and output.
4	IN	PM1	-
5	IN	PM2	-
6	IN	PM3	-
7	IN	PM4	Select setup memories and auto test program memories.
	IN	PM4 PM5	-
	IN	PM6	-
9			-
10	IN	PM7	
11	IN	STB	Recall setup memories and programs selected with the PM0 to PM7 signals.
12	-	Reserved	_
13		Reserved	Not used.
14		Reserved	
15	IN	START	Start a test.
16	IN	STOP	Stop a test.
17	IN	ENABLE	Enable the START signal.
18	-	COM	I/O circuit common (chassis potential).
19	IN	INTERLOCK-	Activate/release interlock.
20	-	COM	I/O circuit common (chassis potential).
21	_	+24V	+24 V internal power supply output terminal. Maximum output current 100 mA.
22	OUT	H.V ON/LINE ON	Set to on in any of the following conditions. Testing. Auto testing. Voltage remaining across the output terminals. Power being supplied to the EUT from the TOS9303LC through AC LINE OUT.
23	OUT	RISE	Set to on when the voltage is rising.
24	OUT	TEST	Set to on during test time.
25	OUT	PASS	Set to on for the duration of time specified by Pass Hold when a PASS judgment is made.
26	OUT	U FAIL	Set to on continuously when a U-FAIL judgment is made. Or set to on continuously along with the L FAIL signal when CONTACT FAIL judgment is made when a scanner is connected.
27	OUT	L FAIL	Set to on continuously when an L-FAIL judgment is made. Or set to on continuously along with the U FAIL signal when CONTACT FAIL judgment is made when a scanner is connected.
28	-	Reserved	Not used.
29	OUT	READY	Set to on when the product is ready to start a test.
30	OUT	PROTECTION	Set to on when a protection function is activated.
31	OUT	STEP END	Set to on when each step ends during an auto test.
32	OUT	CYCLE END	Set to on when the last step ends during an auto test.
33	OUT	ACW	Set to on when the test mode is set to AC withstanding voltage test.
34	OUT	DCW	Set to on when the test mode is set to DC withstanding voltage test.
35	OUT	IR	Set to on when the test mode is set to insulation resistance test.
36	OUT	EC	Set to on when the test mode is set to earth continuity test.
37	OUT	LC	Set to on when the test mode is set to touch current test or protective conductor test.

LAN/USB/RS232C Standard Digital Interface

LXI compatible LAN, USB 2.0, USB-TMC compatible USB, and RS232C as standard digital interface.

* Connecting with a smartphone.

tablet, etc. requires a Wi-Fi environment (wireless LAN router etc.).

▲Rear panel•Interface(All models)

 Use a browser from a PC, smartphone, or tablet to access the web server built into the TOS9300 series for convenient control and monitoring.

[Recommended browser] • Requires for the Internet Explorer version 9.0 or later • Requires for the firefox 8.0 or later • Requires for the safari / mobile Safari 5.1 or later • Requires for the Chrome 15.0 or later

•Requires for the Chrome 15.0 or later •Requires for the Opera 11.0 or later

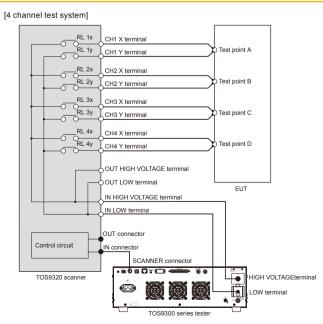
Peripheral devices

High-voltage scanner TOS9320

TOS9320 Front View

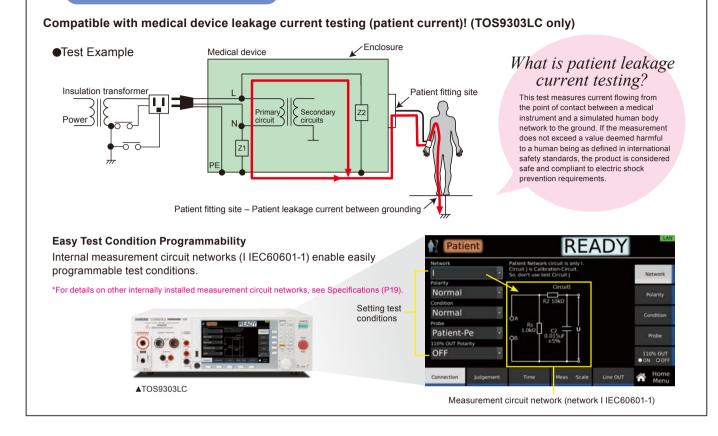
TOS9320 Rear View

TOS9320

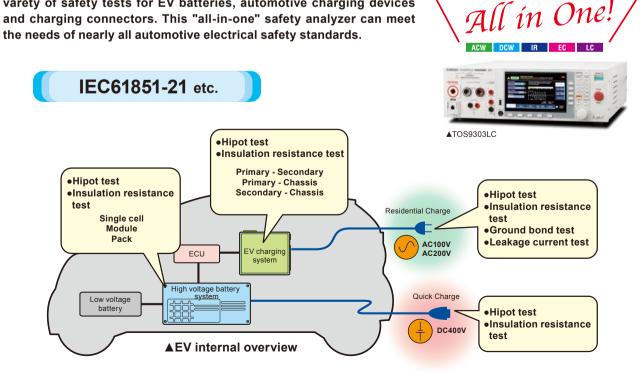

The TOS9320 high voltage scanner allows for rapid distribution of testing voltage from the main unit to multiple testing points for withstanding voltange and insulation resistance testing.

Channels can be controlled via an external device through the rear panel CONTROLLER INTERFACE connector. The scanner can also be used standalone or with an external control device for other Kikusui withstanding voltage and insulation resistance testing instruments. Hipot tests for electronic devices with multiple testing points have never been easier.

(See Application P9)

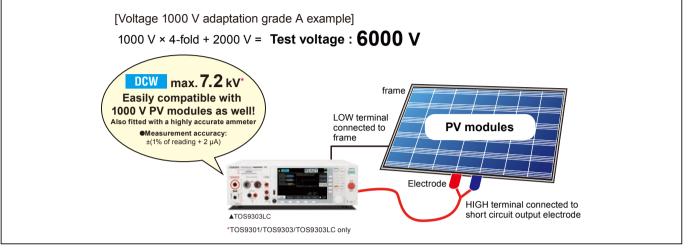

- Output can be expanded to four channels with one high-voltage scanner. The electric potential of each channel can be arbitrarily set to high, low, or open, and can be tested at any of these four points.
- Up to four high voltage scanners (total 16 channels) can be connected to each unit.
- Output of each channel and contact with testing points can be easily monitored.

Operation of the high-voltage scanner

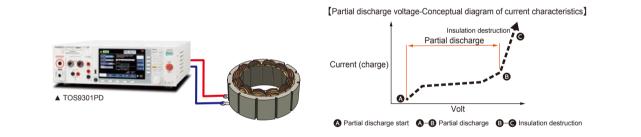

Electrical Safety Multi-analyzer

Leakage Current Test

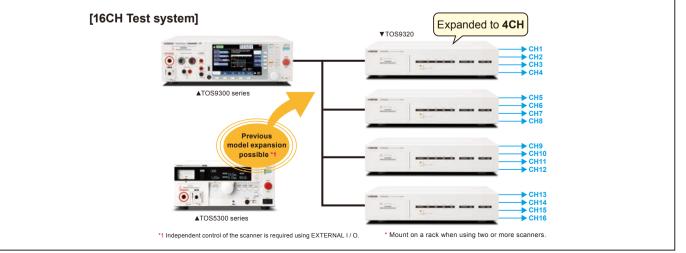
Electrical safety standard testing for automotive components


Compatible with both AC and DC, the TOS9303LC complies with a wide varety of safety tests for EV batteries, automotive charging devices and charging connectors. This "all-in-one" safety analyzer can meet the needs of nearly all automotive electrical safety standards.

Electrical Safety Multi-analyzer


PV (solar battery) module withstanding voltage/insulation resistance testing

Withstanding voltage tests such as IEC61730-2 and JIS C 8992-2 require testing voltage to be drastically increased (4 times the maximum system voltage + 2000 V) and maintained for 1 minute.


Partial discharge

[EUT (example): small motors, transformers, insulating materials, etc.] The partial discharge test detects the state before dielectric breakdown, so it can detect potential defects and manufacturing variations that cannot be detected by the conventional withstand voltage test.

Multi-channel withstanding voltage/insulation resistance testing

Multiple testing points can be simultaneously tested to cut costs and save time! The TOS9320 high voltage scanner allows for multi channel expansion for the TOS9300 series as well as previous models.

Electrical Safety Multi-analyzer

Unless specified otherwise, the specifications are for the following settings and conditions • The product is warmed up for at least 30 minutes.

- The product is warmed up for at least 30 minutes.
 TYP: These are typical values that are representative of situations where the product operates in an environment with an ambient temperature of 23 °C. These values do not guarantee the performance of this product.
 setting: Indicates a setting. range: Indicates the rated value of each range. reading: Indicates a readout value.
 The various tests are abbreviated as follows: ACW: AC withstanding voltage, DCW: DC withstanding voltage, IR: insulation resistance, EC: earth continuity, LC: leakage current, TC: touch current, PCC: protective conductor current, Patient: realisting leakage.
- Patient: patient leakage current, Meter: meter mode

Withstanding Voltage Test

[AC Output function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
			0.050 kV to 5.000 kV	0.050 kV to 5.000 kV							
	Output range	Resolution	1 V								
		Setting accuracy	±(1.2 % of setting + 0.	$\pm (1.2 \% \text{ of setting} + 0.02 \text{ kV}) (\text{at no load})$							
	Max. rated load *1		500 VA(5 kV / 100 mA	r)							
	Max. rated current		100 mA (when the out	put voltage is 0.2 kV c	or higher)						
	Transformer rating		500 VA								
AC output	Output voltage	Output voltage		Sine							
	waveform *2	Distortion	2 % or less. (when the	2 % or less. (when the output voltage is 0.5 kV or higher and no load or a pure resistive load is connected)							
	Crest factor		$\sqrt{2 \pm 3\%}$ (0.8 kV or more)								
	F	F		50 Hz / 60 Hz							
	Frequency	Accuracy	±0.1 %								
	Voltage regulation		±3 % or less (when changing from maximum rated load to no load)								
	Short-circuit curren	nt	200 mA or more (output voltage 0.5 kV or higher)								
	Output method		PWM switching								
Start voltage			The voltage at the star	The voltage at the start of the test can be set.							
		Setting range	1 % to 99 % of the test	voltage							
		Resolution	1 %								
Jutput voltage	e monitor function		If the output voltage es	If the output voltage exceeds $\pm(10\% \text{ of setting} + 0.05 \text{ kV})$, the output is turned off, and the protection function is activated.							

[DC Output function]

Item			TOS9301	TOS9301PD	TOS9303	TOS9303LC			
	Output voltage ran	ge	0.050 kV to 7.200 kV	0.050 kV to 7.200 kV					
		Resolution	1 V						
		Setting accuracy	±(1.2 % of setting + 0.02 kV)						
	Max. rated load *1		100 W (5 kV/20 mA, 7.2 kV/13.9	mA)					
DC output section	Max. rated current		20 mA						
	Dinala	7.2 kV no load	20 Vp-p (TYP)	20 Vp-p (TYP)					
	Ripple	Max. rated load	50 Vp-p (TYP)	50 Vp-p (TYP)					
	Voltage regulation		1 % or less (when changing from maximum rated load to no load)						
	Short-circuit curre	nt	100 mA (TYP) (200 mA peak)	100 mA (TYP) (200 mA peak)					
	Discharge function	1	Forced discharge after test comp	Forced discharge after test completion (discharge resistance: 125 kΩ)					
Start voltage			The voltage at the start of the test	can be set.					
		Setting range	1 % to 99 % of the test voltage						
		Resolution	1 %						
Output voltage	e monitor function		If the output voltage exceeds ±(10	If the output voltage exceeds $\pm(10\% \text{ of setting} + 0.05 \text{ kV})$, the output is turned off, and the protection function is activated.					

¹ When tests are performed consecutively, output time limit and rest time may become necessary depending on the upper limit setting
 ^{*2} If an AC voltage is applied to a capacitive load, the output voltage may rise higher than at no load depending on the load capacitance. Further, waveform distortions may occur if an EUT whose capacitance is dependent on voltage (for example, an EUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1 000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

[Measurement function]

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC					
	Measurement range	0 kV to 7.5 kV AC/DC										
	Resolution	0.1 V	0.1 V									
Voltmeter Accura Respon	Accuracy	±(1.2 % of reading + 0	±(1.2 % of reading + 0.005 kV)									
	Baamanaa	Can be switched betwee	een true rms and mean	-value response rms co	nversion.							
	Response	Peak-value response in	Peak-value response in a separate system (the peak-value response is for measuring the dielectric breakdown voltage while rising)									
	Hold function	The voltage measurem	The voltage measurement after a test is finished is held while the pass/fail judgment is displayed.									
	Measurement range	AC: 0.00 mA to 110 m	AC: 0.00 mA to 110 mA, DC: 0.00 mA to 22 mA (Current including the active component and reactive component)									
	Accuracy	±(1 % of reading + 2 μ	\pm (1 % of reading + 2 μ A) (active component)									
	Response	Can be switched betwe	een true rms and mean	-value response rms co	nversion.							
Ammeter *1 *2	Hold function	The current measurem	ent after a test is finis	hed is held while the pa	ss judgment is display	ed.						
1 2	Offset cancel function		Cancels up to 10 mA of the current flowing through the insulation resistance and stray capacitance components across output cables and the like (resistance component only for DC tests). OFF function available.									
	Calibration	Active component: Ca	Active component: Calibrated with the rms of a sine wave using a pure resistive load. Reactive component: Not calibrated.									

*1 During AC voltage tests, current also flows in the stray capacitance of items such as the test leads and tools.

For details on stray capacitance, see "Stray Capacitance of AC Withstanding Voltage Tests"

2 When the temperature and humidity are high, erroneous current from the product's internal and external high-voltage wiring sections to ground increases. When the humidity exceeds 70 %, an erroneous current of about 50 μA may be generated.

TOS9300 SERIES Electrical Safety Multi-analyzer

[Judgment function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
Current judgme	nt operation			The output is shut off when a judgment is made. Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fail separatel. In an auto test, the buzzer is valid only for the judgment that takes place at the end of the program.							
		Judgment method		UPPER FAIL results when a current greater than or equal to the Upper limit is detected. For DCW, judgment is not made during the judgment delay (Judge Delay).							
	UPPER FAIL	Display	"Upper-FAIL" is disp	"Upper-FAIL" is displayed.							
		Buzzer	On								
		SIGNAL I/O	The Upper-FAIL sign	al is generated continu	ously until a STOP sign	al is received.					
		Judgment method		s when a current less the during Voltage rise time							
	LOWER FAIL	Display	"Lower-FAIL" is disp	played.							
		Buzzer	On								
		SIGNAL I/O	The Lower-FAIL sign	The Lower-FAIL signal is generated continuously until a STOP signal is received.							
		Judgment method	PASS judgment is ma	PASS judgment is made if Upper-FAIL or Lower-FAIL has not occurred when the test time elapses.							
		Display	"PASS" is displayed.	"PASS" is displayed.							
	PASS	Buzzer	On (fixed to 50 ms)	On (fixed to 50 ms)							
		SIGNAL I/O		enerated for the length o Infinity, the PASS signa			al is received.				
Voltage rise rate	judgment operation			e is 200 V or more. The				Delay Auto) is set to on an be set in the range of			
		Judgment method	When the voltage rise	e rate (dV/dt) is less than	approx. 1 V/s.						
	dV/dt FAIL	Display	"Upper-FAIL (dV/dt)	" is displayed.							
	d V/dt FAIL	Buzzer	ON								
		SIGNAL I/O	The U FAIL signal is	generated continuously	until a STOP signal is	received.					
Upper limit sett	ing range		AC: 0.01 mA to 110.0	0 mA, DC: 0.01 mA to	21.00 mA						
Lower limit sett	ing range		AC: 0.00 mA to 109.9	AC: 0.00 mA to 109.99 mA, DC: 0.00 mA to 20.99 mA, OFF. Setting 0.00 is equivalent to OFF.							
Judgment accur	acy *1 *2		$\pm (1 \% \text{ of setting} + 5 \mu \text{A})$								
Current detection	on method		Compares to the reference value using the following method. Calculate true rms values, convert mean-value responses to rms values								
Response speed	(filter) switching		Switches the current	detection response spee	d (sensitivity) used in U	JPPER FAIL judgmen	t between five levels i	n ACW and DCW tests			

*1 During AC voltage tests, current also flows in the stray capacitance of items such as the test leads and tools. For details on stray capacitance, see "Stray Capacitance of AC Withstanding Voltage Tests" *2 When the temperature and humidity are high, erroneous current from the product's internal and external high-voltage wiring sections to ground increases. When the humidity exceeds 70 %, an erroneous current of about 50 µA may be generated.

[Timer function]

Item	TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC
Voltage rise time settings range	0.1 s to 200.0 s					
Voltage fall time setting time *1	0.1 s to 200.0 s, OFF					
Test time setting range	0.1 s to 1000.0 s, OFF					
Judgment delay (Judge Delay) setting range *2	0.1 s to 100.0 s, AUTC)*3 (DCW only)				
Accuracy	±(100 ppm of setting -	+ 20 ms) (excluding the	fall time)			

*1 This setting is used only when a PASS judgment occurs in ACW and DCW tests. During a DCW test, the voltage may not drop all the way within the set time because of the electrostatic capacity inside the product and the EUT.

*2 Less than the sum of the rise time and fall time.
*3 If Delay Auto is set to on, LOWER judgment is not made until the charge time ends.

[Other specifications]

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Analog monitor *1		Outputs a voltage sign	nal according to the cur	rent waveform or volta	ge waveform				
	I	Current waveform: So	cale 50 mA/1 V						
	V	Voltage waveform: So	ale 1 kV/1 V						
Grounding mode (GND)		Can be switched betw	Can be switched between Low and Guard.						
	Low	GND is connected to	GND is connected to the low terminal. Measures the current flowing across the low terminal and chassis (normal applications).						
	Guard *2		GND is connected to Guard. Measures only the current flowing through the low terminal (current flowing through the chassis is not measured) (high sensitivity, high accuracy measure-ment applications).						

*1 Monitor signal output is isolated from the chassis (earth). If you connect an oscilloscope or an external device whose BNC shield is grounded, be sure to set the grounding mode (GND) to Guard. The *2 If there is a possibility that the EUT or tools and the like will be grounded or if you are uncertain, do not set GND to Guard. Doing so is extremely dangerous because the ammeter will be shorted and

will not be able to measure current. For normal applications, set GND to Low.

Electrical Safety Multi-analyzer

Insulation Resistance Test

[Output function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC				
	Output		-0.025 kV to -1 kV								
	Output voltage	Resolution	1 V	1 V							
N:	range	Setting accuracy	±(1.2 % of setting + 0.0	±(1.2 % of setting + 0.002 kV)							
Negative	Max. rated load		1 W (-1 kV/1 mA)								
polarity	Dirate	1 kV no load	2 Vp-p or less								
	Ripple	Max. rated load	10 Vp-p or less								
	Short-circuit curre	nt	12 mA or less								
	Output			+0.05 kV to +7.2 kV							
	Output voltage	Resolution		1 V							
	range	Setting accuracy		±(1.2 % of setting + 0.02 k	(V)						
Positive polarity *1	Max. rated load		-	7.2 W(7.2 kV/1 mA)							
polarity ·	D: 1	1 kV no load		20 Vp-p or less							
	Ripple	Max. rated load		50 Vp-p or less							
	Short-circuit curre	nt		100 mA (TYP) (200 mA peak)							
Max. rated cur	rrent		1 mA								
Voltage regula	ation		1 % or less (when chang	ging from maximum rated load	d to no load)						
Discharge fun	ction		Forced discharge after	test completion (discharge resi	istance: 20 kΩ)						
Output voltage	e monitor function		If the output voltage exce	eeds ±(10 % of setting + 0.05 kV	/), the output is turned off, ar	nd the protection function is act	ivated.				

*1 TOS9300 are not supported.

[Measurement function]

Item			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC	
	Measurement range		Negative polarity: 0 Vdc t	o -1.2 kVdc, positive polarit	y: 0 Vdc to 7.5 kVdc			
Voltmeter	Resolution		0.1 V					
	Accuracy		Negative polarity: ±(1 % o	Negative polarity: ±(1 % of reading + 0.001 kV), positive polarity: ±(1.2 % of reading + 0.001 kV)				
	Measurement range		0.001 M Ω to 100.0 G Ω (in	the range of maximum rate	ed current of 1 mA to 5 nA)			
			$500.000 \text{ M}\Omega \leq \text{F}$	$R < 1.000 \text{ G}\Omega$: ±(15 % of real	ding + 0.5 MΩ)			
		$5 \text{ nA} \le i \le 50 \text{ nA *3}$	$1.000~G\Omega \le R$	< 10.000 GΩ: ±(15 % of rea	ding + 5 M Ω)			
			$10.000 \text{ G}\Omega \leq R \leq$	100.000 GΩ: ±(20 % of rea	ding + 200 MΩ)			
			$200.000 \text{ M}\Omega \leq \text{H}$	$R < 1.000 \text{ G}\Omega$: ±(10 % of real	ding + 0.5 MΩ)			
		50 nA ≤ i ≤ 100 nA *3	$1.000 \text{ G}\Omega \leq R$	< 10.000 GΩ: ±(10 % of rea	ding + 5 M Ω)			
		50 IIA < 1 ≤ 100 IIA · 5	$10.000~G\Omega \le R$	< 50.000 GΩ: ±(10 % of rea	ding + 50 M Ω)			
			$50.000~G\Omega \le R \le$	100.000 GΩ: ±(20 % of rea	ding + 200 MΩ)			
	Accuracy *1 *2		$100.000 \text{ M}\Omega \leq \text{I}$	$R < 1.000 \text{ G}\Omega$: $\pm (7 \% \text{ of read})$	ing + 0.5 MΩ)			
	(when GND is set to Guard)	100 nA < i ≤ 200 nA *4	$1.000 \text{ G}\Omega \leq I$	$R < 2.000 \text{ G}\Omega$: $\pm (7 \% \text{ of read})$	$ing + 5 M\Omega$)			
	(i: measured current)		$2.000~G\Omega \le R$	< 10.000 GΩ: ±(7 % of read	ing + 10 MΩ)			
	(R: measurement		$10.000~G\Omega \le R$	< 50.000 GΩ: ±(7 % of read	ing + 100 MΩ)			
	resistance)		$10.000~M\Omega \leq R <$	100.000 MΩ: ±(5 % of read	ding + 0.05 MΩ)			
	,	200 nA < i ≤ 1 µA *4	$100.000 \text{ M}\Omega \leq R$	$< 1.000 \text{ G}\Omega: \pm (5 \% \text{ of read})$	$ding + 0.5 M\Omega$)			
		200 IIA < 1 ≤ 1 µA · 4	$1.000~G\Omega \le R$	< 10.000 GΩ: ±(5 % of read	ding + 5 M Ω)			
			$10.000 \ G\Omega \le R$	< 25.000 GΩ: ±(5 % of read	ding + 50 M Ω)			
		$1 \ \mu A \le i \le 1 \ m A * 4$	$0.001~M\Omega \le R$	< 10.000 MΩ: ±(2 % of read	ding + 0.003 MΩ)			
			$10.000~M\Omega \leq R <$	100.000 MΩ: ±(2 % of read	ding + 0.03 MΩ)			
		ιμα «ι <u>s</u> τιμα τ	$100.000 \text{ M}\Omega \leq R$	$< 1.000 \text{ G}\Omega: \pm (2 \% \text{ of read})$	$ding + 0.3 M\Omega$)			
Resistance			$1.000 \text{ G}\Omega \leq R$	$< 5.000 \text{ G}\Omega: \pm (2 \% \text{ of read})$	ding + 3 M Ω)			
meter			$500.000 \text{ M}\Omega \le \text{R}$	$< 1.000 \text{ G}\Omega: \pm (25 \% \text{ of res})$	ading + 0.5 MΩ)			
meter		$5 \text{ nA} \le i \le 50 \text{ nA} *3$	$1.000~G\Omega \le R$	< 10.000 GΩ: ±(25 % of real	ading + 5 MΩ)			
			$10.000~G\Omega \leq R \leq$	100.000 GΩ: ±(30 % of real	ading + 200 MΩ)			
			$200.000 \text{ M}\Omega \leq \text{R}$	$< 1.000 \text{ G}\Omega: \pm (20 \% \text{ of res})$	ading + 0.5 MΩ)			
		50 nA ≤ i ≤ 100 nA *3	$1.000 \text{ G}\Omega \leq R$	< 10.000 GΩ: ±(20 % of re	ading + 5 MΩ)			
		So me er groome g	$10.000 \text{ G}\Omega \leq R$	$< 50.000 \text{ G}\Omega: \pm (20 \% \text{ of res})$	ading + 50 MΩ)			
			$50.000~G\Omega \le R \le$	100.000 GΩ: ±(30 % of real	ading + 200 MΩ)			
	Accuracy *5 (when GND is set to		$100.000 \text{ M}\Omega \leq \text{R}$	$< 1.000 \text{ G}\Omega$: $\pm (10 \% \text{ of res})$	ading + 0.5 MΩ)			
	(when GND is set to Low)	$100 \text{ nA} < i \le 200 \text{ nA} *4$	$1.000 \text{ G}\Omega \leq R$	$< 2.000 \text{ G}\Omega: \pm (10 \% \text{ of res})$	ading + 5 MΩ)			
	(i: measured current)	100 mr 41 200 mr 4	$2.000 \text{ G}\Omega \leq R$	< 10.000 G Ω : ±(10 % of res	ading + 10 MΩ)			
	(R: measurement		$10.000 \ G\Omega \le R$	< 50.000 GΩ: ±(10 % of real	ading + 100 MΩ)			
	resistance)		$10.000~M\Omega \leq R <$	100.000 MΩ: ±(5 % of read	ding + 0.05 MΩ)			
	,	200 nA < i ≤ 1 µA *4	$100.000 \text{ M}\Omega \leq R$	$< 1.000 \text{ G}\Omega: \pm (5 \% \text{ of read})$	ding + 0.5 M Ω)			
		200 IIA < I <u>S</u> I µA 4	$1.000 \ G\Omega \le R$	< 10.000 GΩ: ±(5 % of read	ding + 5 M Ω)			
			$10.000 \text{ G}\Omega \leq R$	< 25.000 GΩ: ±(5 % of read	ding + 50 M Ω)			
			$0.001~M\Omega \le R$	< 10.000 MΩ: ±(2 % of read	ding + 0.003 MΩ)			
		$1 \ \mu A \le i \le 1 \ m A *4$	$10.000~M\Omega \leq R <$	100.000 MΩ: ±(2 % of read	ding + 0.03 MΩ)			
		$1 \mu A < 1 \le 1 m A^{-4}$	$100.000 \text{ M}\Omega \leq \text{R}$	$< 1.000 \text{ G}\Omega: \pm (2 \% \text{ of read})$	ding + 0.3 MΩ)			
			$1.000 \text{ G}\Omega \leq R$	$< 5.000 \text{ G}\Omega: \pm (2 \% \text{ of read})$	ding + $\overline{3 M\Omega}$			
	Hold function		The resistance measureme	ent after a test is finished is	held while the pass judgme	nt is displayed.		
	Offset cancel function	n	Cancels up to 2000 G Ω of	the unnecessary insulation	resistance across output ca	bles and the like. OFF funct	ion available.	

*1 Humidity: 70 %rh or less (no condensation), when there is no interference caused by wobbly test leads or other problems.

*2 If the grounding mode (GND) is set to low in a highly humid environment, leakage current to ground will be generated from the high-voltage wiring sections inside the product and the high-voltage wiring sections between the product and the EUT. This leakage current ranges from several nA to several tens of nA depending on the usage and wiring conditions of the optional TOS9320 high-voltage scanner and greatly affects measurement accuracy. The effects of leakage current can be reduced by making measurements with the offset enabled.

*3 Add 10 % to the accuracy when measuring 100 V or less.

*4 Add 5 % to the accuracy when measuring 100 V or less.

*5 When the measured current is limited to 100 nA or more (no condensation) when the humidity is 50 %rh or less, no external disturbance is present such as swinging test leads, and the offset is enabled.

TOS9300 SERIES Electrical Safety Multi-analyzer

[Judgment function]

Item	ionj		TOS9300 TOS9301 TOS9301PD TOS9303 TOS9303LC		
	. 4		The output is shut off when a judgment is made. Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fail		
Behavior based on ju	idgment		separately. In an auto test, the buzzer is valid only for the judgment that takes place at the end of the program.		
		Judgmont mothod	UPPER FAIL results when a resistance greater than or equal to the Upper limit is detected.		
		Judgment method	Judgment is not made during or Voltage rise time.		
U	JPPER FAIL	Display	"Upper-FAIL" is displayed.		
		Buzzer	On		
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.		
		Judgment method	LOWER FAIL results when a resistance less than or equal to the Lower limit is detected.		
		Judgment method	Judgment is not made during the judgment delay (Judge Delay).		
L	LOWER FAIL Display "Lower-FAIL" is displayed.				
		Buzzer	On		
		SIGNAL I/O	The Lower-FAIL signal is generated continuously until a STOP signal is received.		
		Judgment method	PASS judgment is made if Upper-FAIL or Lower-FAIL has not occurred when the test time elapses.		
		Display	"PASS" is displayed.		
PASS	Buzzer	On (fixed to 50 ms)			
		The PASS signal is generated for the length of time specified by the Pass Hold setting.			
		SIGNAL I/O	If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.		
			Monitors the voltage rise rate during Voltage rise time. This is valid when Auto setting of the judgment delay (Delay Auto) is set to		
/oltage rise rate judgment operation			and the output voltage is 200 V or more. The output is shut off when a judgment is made. Buzzer volume level can be set in the range		
			of 0 (OFF) to 10 for pass and fail separately.		
		Judgment method	When the voltage rise rate (dV/dt) is less than approx. 1 V/s.		
		Display	"Lower-FAIL (dV/dt)" is displayed.		
d	V/dt FAIL	Buzzer	ON		
		SIGNAL I/O	The L FAIL signals are generated continuously until a STOP signal is received.		
Jpper limit setting ra	ange		$0.001 \text{ M}\Omega$ to $100.000 \text{ G}\Omega$ (in the range up to the maximum rated current), OFF		
Lower limit setting range			0.001 M_{22} to 100.000 GS2 (in the range up to the maximum rated current), OFF. Setting 0.000 is equivalent to OFF.		
Sower mint setting i	unge		$\frac{1}{500.000 \text{ M}\Omega \leq \text{R} < 1.000 \text{ G}\Omega: \pm (15\% \text{ of setting } + 0.51 \text{ M}\Omega)}{500.000 \text{ M}\Omega \leq \text{R} < 1.000 \text{ G}\Omega: \pm (15\% \text{ of setting } + 0.51 \text{ M}\Omega)}$		
		$5 \text{ nA} \le i \le 50 \text{ nA *4}$	$\frac{1000 \text{ G}\Omega \leq \text{K} < 1.000 \text{ G}\Omega:}{1.000 \text{ G}\Omega: \pm (15\% \text{ of setting} + 15\text{ M}\Omega)}$		
		$5 \text{ IIA} \le 1 \le 50 \text{ IIA} 4$			
			$\frac{10.000 \text{ G}\Omega \le \text{R} \le 100.000 \text{ G}\Omega: \pm (20 \% \text{ of setting} + 210 \text{ M}\Omega)}{200.000 \text{ M}\Omega \le \text{R} \le 1.000 \text{ G}\Omega: \pm (10 \% \text{ of setting} + 0.51 \text{ M}\Omega)}$		
		50 nA ≤ i ≤ 100 nA * 4	$\frac{1.000 \text{ G}\Omega \leq \text{R} < 10.000 \text{ G}\Omega: \pm (10\% \text{ of setting} + 15\text{ M}\Omega)}{10.000 \text{ G}\Omega \leq \text{R} < 50.000 \text{ G}\Omega: \pm (10\% \text{ of setting} + (0\text{ M}\Omega))}$		
			10.000 GΩ ≤ R < 50.000 GΩ: ±(10 % of setting + 60 MΩ)		
			$50.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega: \pm (20 \% \text{ of setting} + 210 \text{ M}\Omega)$		
Accuracy *1 *2 *3			$100.000 \text{ M}\Omega \le R < 1.000 \text{ G}\Omega: \pm (7 \% \text{ of setting } + 0.51 \text{ M}\Omega)$		
when GND is set to	Guard)	$100 \text{ nA} < i \le 200 \text{ nA} *5$	$1.000 \text{ G}\Omega \leq R < 2.000 \text{ G}\Omega: \pm (7\% \text{ of setting} + 15 \text{ M}\Omega)$		
i: measured current)			$2.000 \text{ G}\Omega \le \text{R} < 10.000 \text{ G}\Omega: \pm (7 \text{ \% of setting } + 20 \text{ M}\Omega)$		
R: measurement res	·		10.000 GΩ \leq R $<$ 50.000 GΩ: ±(7 % of setting + 110 MΩ)		
it. measurement res	instance)		$10.000 \text{ M}\Omega \le R \le 100.000 \text{ M}\Omega: \pm (5\% \text{ of setting} + 0.06 \text{ M}\Omega)$		
		200 - 4 4 - * 5	$100.000 \text{ M}\Omega \le \text{R} < 1.000 \text{ G}\Omega: \pm (5 \% \text{ of setting} + 0.51 \text{ M}\Omega)$		
		$200 \text{ nA} \le i \le 1 \mu \text{A *5}$	$1.000 \text{ G}\Omega \le R \le 10.000 \text{ G}\Omega: \pm (5 \% \text{ of setting} + 15 \text{ M}\Omega)$		
			$10.000 \text{ G}\Omega \le \text{R} < 25.000 \text{ G}\Omega$: $\pm (5\% \text{ of setting} + 60 \text{ M}\Omega)$		
			$0.001 \text{ M}\Omega \leq \text{R} < 10.000 \text{ M}\Omega$: $\pm (2\% \text{ of setting} + 0.013 \text{ M}\Omega)$		
			$10.000 \text{ M}\Omega \le R \le 100.000 \text{ M}\Omega$: $\pm (2\% \text{ of setting} + 0.04 \text{ M}\Omega)$		
		$1 \ \mu A < i \le 1 \ m A * 5$	$100.000 \text{ M}\Omega \le \text{R} < 1.000 \text{ G}\Omega: \pm (2\% \text{ of setting } + 0.31 \text{ M}\Omega)$		
			$1.000 \text{ G}\Omega \le \text{R} < 5.000 \text{ G}\Omega: = (2\% \text{ of setting } + 0.51 \text{ mm})$ $1.000 \text{ G}\Omega \le \text{R} < 5.000 \text{ G}\Omega: = \pm (2\% \text{ of setting } + 13 \text{ M}\Omega)$		
			$500.000 \text{ M}\Omega \le \text{R} < 1.000 \text{ G}\Omega: \pm (2.5\% \text{ of setting} + 1.5 \text{ M}\Omega)$		
		$5 \text{ nA} \le i \le 50 \text{ nA *4}$	$\frac{1000 \text{ G}\Omega \leq R < 1000 \text{ G}\Omega = 10000 \text{ G}\Omega = 1000 \text{ G}\Omega = 10000 \text{ G}\Omega = 100000 \text{ G}\Omega = 10000 \text{ G}$		
		$5 \text{ IIA} \le 1 \le 50 \text{ IIA} 4$	$\frac{1.000 \text{ G}\Omega}{10.000 \text{ G}\Omega} \le \mathbb{R} < 10.000 \text{ G}\Omega: \pm (30\% \text{ of setting} + 15 \text{ M}\Omega)$		
			$200.000 \text{ M}\Omega \le \text{R} < 1.000 \text{ G}\Omega: \pm (20 \% \text{ of setting} + 0.51 \text{ M}\Omega)$		
		$50 \text{ nA} \le i \le 100 \text{ nA} *4$	1.000 GΩ≤ R < 10.000 GΩ: \pm (20 % of setting + 15 MΩ)		
			10.000 GΩ \leq R < 50.000 GΩ: ±(20 % of setting + 60 MΩ)		
			$50.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega: \pm (30\% \text{ of setting} + 210 \text{ M}\Omega)$		
Accuracy *6			100.000 MΩ \leq R < 1.000 GΩ: ±(10 % of setting + 0.51 MΩ)		
when GND is set to	I am)	$100 \text{ nA} \le i \le 200 \text{ nA} *5$	$1.000 \text{ G}\Omega \leq \text{R} \leq 2.000 \text{ G}\Omega: \pm (10 \% \text{ of setting} + 15 \text{ M}\Omega)$		
i: measured current)	,	100 IIA ~ 1 ≥ 200 IIA * 3	2.000 GΩ≤ R < 10.000 GΩ: \pm (10 % of setting + 20 MΩ)		
			$10.000 \text{ G}\Omega \le R \le 50.000 \text{ G}\Omega: \pm (10 \% \text{ of setting} \pm 110 \text{ M}\Omega)$		
R: measurement resistance) $200 \text{ nA} < i \le 1$			$10.000 \text{ M}\Omega \leq \text{R} < 100.000 \text{ M}\Omega$: $\pm (5 \% \text{ of setting} + 0.06 \text{ M}\Omega)$		
			$100.000 \text{ M}\Omega \le \text{R} < 1.000 \text{ G}\Omega: \pm (5\% \text{ of setting} + 0.51 \text{ M}\Omega)$		
		$200 \text{ nA} \le i \le 1 \mu \text{A *5}$	$\frac{10000 \text{ G}\Omega \leq \text{R} < 10.000 \text{ G}\Omega: \pm (5\% \text{ of setting } + 15 \text{ M}\Omega)}{1.000 \text{ G}\Omega \leq \text{R} < 10.000 \text{ G}\Omega: \pm (5\% \text{ of setting } + 15 \text{ M}\Omega)}$		
			$\frac{10000 \text{ G}_{22} \text{ R} \times 10000 \text{ G}_{22}}{10.000 \text{ G}_{2} \text{ R} \times 25.000 \text{ G}_{2}} \pm (5\% \text{ of setting} + 15 \text{ M}_{2})}$		
			$\begin{array}{c} 0.001 \text{ M}\Omega \leq \text{R} < 10.000 \text{ M}\Omega: \ \pm (2 \ \% \text{ of setting } + 0.013 \text{ M}\Omega) \\ \hline 10.000 \text{ M}\Omega \leq \text{R} < 100.000 \text{ M}\Omega: \ \pm (2 \ \% \text{ of setting } + 0.04 \text{ M}\Omega) \end{array}$		
		$1 \ \mu A \le i \le 1 \ m A *5$			
		$1 \ \mu A \le i \le 1 \ mA \ *5$	10.000 MΩ≤ R < 1.000 GΩ: $\pm (2\% \text{ of setting } + 0.04 \text{ M2})$ 100.000 MΩ≤ R < 1.000 GΩ: $\pm (2\% \text{ of setting } + 0.31 \text{ MΩ})$ 1.000 GΩ≤ R < 5.000 GΩ: $\pm (2\% \text{ of setting } + 13 \text{ MΩ})$		

*1 Making judgments on 200 µA or less requires at least 3 seconds after the rise time ends. Making judgments when the low pass filter is set to on requires at least 10 seconds after the rise time ends.

*2 Humidity: 70 %rh or less (no condensation), when there is no interference caused by wobbly test leads or other problems.

*3 If the grounding mode (GND) is set to low in a highly humid environment, leakage current to ground will be generated from the high-voltage wiring sections inside the product and the high-voltage wiring sections between the product and the EUT. This leakage current ranges from several nA to several tens of nA depending on the usage and wiring conditions of the optional TOS9320 high-voltage scanner and greatly affects measurement accuracy. The effects of leakage current can be reduced by making measurements with the offset enabled.

*4 Add 10 % to the accuracy when measuring 100 V or less.

*5 Add 5 % to the accuracy when measuring 100 V or less.

*6 When the measured current is limited to 100 nA or more (no condensation) when the humidity is 50 %rh or less, no external disturbance is present such as swinging test leads, and the offset is enabled.

TOS9300 SERIES Electrical Safety Multi-analyzer

[Timer function]

TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC
0.1 s to 200.0 s				
0.1 s to 1000.0 s, OFF				
0.1 s to 100.0 s, AUTO *2				
\pm (100 ppm of setting + 20 ms)				
	0.1 s to 200.0 s 0.1 s to 1000.0 s, OFF 0.1 s to 100.0 s, AUTO *2	0.1 s to 200.0 s 0.1 s to 1000.0 s, OFF 0.1 s to 100.0 s, AUTO *2	0.1 s to 200.0 s 0.1 s to 1000.0 s, OFF 0.1 s to 100.0 s, AUTO *2	0.1 s to 200.0 s 0.1 s to 1000.0 s, OFF 0.1 s to 100.0 s, AUTO *2

*1 Less than the sum of the rise time and fall time.
*2 If Delay Auto is set to on, UPPER judgment is not made until the charge time ends.

*3 This excludes fall time.

[Other specifications]

Item		TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC	
Grounding mode (GND)		Can be switched between Low and Guard.					
T		GND is connected to the low terminal.					
	Low		Measures the current flowing across the low terminal and chassis (normal applications).				
	Guard *1	GND is connected to Gua	rd. Measures only the curre	ent flowing through the low	terminal (cur-rent flowing t	hrough the chassis is not	
	Guard	measured) (high sensitivity	ty, high accuracy measurem	nent applications).			
Filter function		A low-pass filter can be inserted into the ammeter measurement circuit. *2					

*1 If there is a possibility that the EUT or tools and the like will be grounded or if you are uncertain, do not set GND to Guard. Doing so is extremely dangerous because the ammeter will be shorted and will not be able to measure current. For normal applications, set GND to Low.

*2 When the low pass filter is on, a judgment delay of at least 5 seconds and a test time are required.

Electrical Safety Multi-analyzer

Earth Continuity Test

[Output function]

Item	em		TOS9302	TOS9303	TOS9303LC	
			3.0 A to 42.0 A AC/DC			
Current setting range *1 Resolution Accuracy		0.1 A				
		Accuracy	±(1 % of setting + 0.4 A)	±(1 % of setting + 0.4 A)		
	Maximum rated output *2		220 VA (at the output terminal)			
	Distortion		2 % or less (20 A or more, using a 0.1 Ω pure	resistive load)		
AC			Select 50 Hz or 60 Hz. Sine			
AC	Frequency	Accuracy	±200 ppm			
	Open terminal vol	tage	6 Vrms or less			
	Output method		PWM switching	PWM switching		
	Maximum rated or	ıtput	220 W (at the output terminal)			
DC	Ripple		±0.4 Ap-p or less (TYP)	±0.4 Ap-p or less (TYP)		
	Open terminal vol	tage	6.0 V or less			

*1 No greater than the maximum rated output and resistance no greater than the output terminal voltage 5.4 V.

*2 When tests are performed consecutively, output time limit and rest time may become necessary depending on the upper limit setting.

[Measurement function]

Item		TOS9302	TOS9303	TOS9303LC		
	Measurement range	0.0 A to 45.0 A AC/DC				
Output ammeter	Resolution	0.01 A				
	Accuracy	±(1 % of reading + 0.2 A)				
	Response	AC: true rms value: DC: mean value	AC: true rms value: DC: mean value			
	Hold function	The current measurement after a test is finis	ned is held while the pass or fail judgment is o	lisplayed.		
	Measurement range	AC: 0.00 V to 6.00 V, DC: 0.00 V to 8.50 V				
	Resolution	0.001 V				
Output voltmeter	Offset cancel function	Cancels up to 5 V (AC/DC) of the unnecessa	ry voltage from measurements. OFF function	available.		
Output voltimeter	Accuracy	±(1 % of setting + 0.02 V)				
	Response	AC: true rms value: DC: mean value				
	Hold function	The voltage measurement after a test is finished is held while the pass or fail judgment is displayed.				
	Measurement range *1	1 mΩ to 600 mΩ				
	Resolution	1 mΩ				
Resistance meter	Offset cancel function	Cancels up to 10 Ω of the unnecessary resistance from measurements. OFF function available.				
	Accuracy	$\pm (2 \% \text{ of reading} + 3 \text{ m}\Omega)$				
	Hold function	The resistance measurement after a test is fin	ished is held while the pass judgment is disp	layed.		

*1 Calculated from the measured output voltage and measured output current.

[Judgment function]

Item	Item		TOS9302	TOS9303	TOS9303LC		
			Judgment based on resistance or sensing vol	age can be selected. The output is shut off wh	hen a judgment is made. Buzzer volume level		
			can be set in the range of 0 (OFF) to 10 for pa				
			In an auto test, the buzzer is valid only for the	e judgment that takes place at the end of the p	program.		
		Judgment method		er than or equal to the Upper limit is detected	d or when a sensing voltage is detected.		
		sugment method	Judgment is not made during a contact check				
	UPPER FAIL	Display	"Upper-FAIL" is displayed.				
		Buzzer	On				
		SIGNAL I/O	The Upper-FAIL signal is generated continu	ously until a STOP signal is received.			
Behavior based		Judgment method	LOWER FAIL results when a resistance less	than or equal to the lower limit (Lower) is de	etected or when a sensing voltage is detected.		
on judgment	LOWER FAIL	Display	"Lower-FAIL" is displayed.				
	LOWERFAIL	Buzzer	On				
		SIGNAL I/O	The Lower-FAIL signal is generated continu	ously until a STOP signal is received.			
		Judgment method	PASS judgment is made if Upper-FAIL or Le	ower-FAIL has not occurred when the test tin	ne elapses.		
		Display	"PASS" is displayed.				
	PASS	Buzzer	On (fixed to 50 ms)				
		SIGNAL I/O	The PASS signal is generated for the length				
		SIGNAL I/O	If Pass Hold is set to Infinity, the PASS signa	l is generated con-tinuously until a STOP sig	nal is received.		
Resistance	Upper limit setting	g range	0.0001 Ω to 10.0000 Ω				
judgment	Lower limit setting	g range	0.0000 Ω to 9.9999 Ω				
Judgment	Judgment accuracy	ý	$\pm (2\% \text{ of setting } + 3 \text{ m}\Omega)$				
	Upper limit setting	g range	0.001 V to 5.000 V AC/DC	0.001 V to 5.000 V AC/DC			
Voltage judgment	Lower limit setting	g range	0.000 V to 4.999 V AC/DC				
	Judgment accuracy		±(2 % of setting + 0.05 V)	±(2 % of setting + 0.05 V)			
Calibration			Calibrated using a pure resistive load (with t	he rms of a sine wave for AC)			
Contact check fur	nction		Checks that current flows through the test le	ads and then starts the test. (OFF setting avai	lable)		

[Timer function]

Item	TOS9302	TOS9303	TOS9303LC	
Current rise time settings range	0.1 s to 200.0 s			
Current fall time setting time *1	0.1 s to 200.0 s, OFF			
Test time 0.1 s to 1000.0 s, OFF				
±(100 ppm of setting + 20 ms) (excluding the fall time)				

*1 This setting is used only when a PASS judgment occurs. During a DC test, the voltage may not drop all the way within the set time because of the electrostatic capacity inside the product and the EUT.

Electrical Safety Multi-analyzer

Partial Discharge Test

[Output function]

Item			TOS9301PD
			0.050 kV to 5.000 kV
	Output range	Resolution	1 V
		Setting accuracy	$\pm (1.2\% \text{ of setting} \pm 0.02 \text{kV}) \text{ (at no load)}$
	Max. rated load		250 VA (5 kV/ 50mA)
	Max. rated current		50 mA (when the output voltage is 0.2 kV or higher)
	Output voltage		Sine
AC output section	waveform*1	Distortion	2 % or less. (when the output voltage is 0.5 kV or higher and no load or a pure resistive load is connected)
	Crest factor		$\sqrt{2 \pm 3\%}$ (0.8 V or higher)
	F		50 Hz/60 Hz
	Frequency	Accuracy	±0.1 %
	Voltage regulation		±3 % or less (when changing from maximum rated load to no load)
	Output method		PWM switching
Output voltage me	onitor function		If the output voltage exceeds $\pm(10\% \text{ of setting} + 0.05 \text{ kV})$, the output is turned off, and the protection function is activated.

*1 If an AC voltage is applied to a capacitive load, the output voltage may rise higher than at no load depending on the load capacitance. Further, waveform distortions may occur if an EUT whose capacitance is dependent on voltage (for example, an EUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5kV, the effect of a capacitance of 1 000pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

[Measurement function]

Item			TOS9301PD
	Measurement range		0.00 kV to 7.50 kV AC/DC
	Resolution		0.1 V
Voltmeter	Accuracy		±(1.2 % of reading + 0.05 kV)
	Response		Can be switched between true rms and peak-value response.
	Hold function		The voltage measurement after a test is finished is held while the pass/fail judgment is displayed.
	Electric charge measur	ement method	IEC60664-1 Edition 3.0 compliant
	Measurement range		0 pC to 10000 pC
	Management	100pC range	0.1 pC
	Measurement resolu- tion	1000pC range	0.1 pC
	tion	10000pC rang	1 pC
		100pC range	\pm (5 % of full scale + 7 pC)
	Accuracy*1	1000pC range	\pm (5 % of full scale)
		10000pC rang	\pm (5 % of full scale)
	Measurement interval		Determined based on the measured values in each cycle of an applied voltage.
	Hold function		The electric charge after a test is finished is held while the pass judgment is displayed.
Electric charge	Maximum electrostatic capacity of the EUT		10 nF
measurement	Peak hold function		Holds the maximum value during a measurement.
measurement	Filter function		A low-pass filter can be inserted into the electric charge measurement circuit.
	Discharge inception voltage, discharge incep- tion voltage measurement		Measures the voltage at which discharge exceeding a preset electric charge starts and the voltage at which discharge ceases (complies with IEC60664-1 third edition).
	Calibration (Precalibra	tion)	Calibrate using the built-in calibration capacitor (1000 pF).
	Pulse counting func-		Counts the number of pulses that have passed through the high-pass filter and makes a FAIL judgment if the count exceeds the upper limit.
	tion	Upper limit setting range	1 to 100000
	BPF characteristics		Can switch the characteristics of the band-pass filter in the electric charge measuring circuit
	switching function	Center frequency	100 kHz / 160 kHz / 300 kHz
	Coupling capacitor		0.01 µF

*1 When Band Pass Filter is set to 160 kHz.

TOS9300 SERIES Electrical Safety Multi-analyzer

[Judgment function]

Item			TOS9301PD
Electric discharge	judgment		The output is shut off when a judgment is made.
	Judgment method		A current higher than or equal to the upper limit is measured.
	UPPER FAII	Display	"Upper-FAIL (Current)" is displayed.
	(Current)	Buzzer	On
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.
	Judgment method		An electric charge greater than or equal to the upper limit is measured.
	UPPER FAIL	Display	"Upper-FAIL (Coulomb)" is displayed.
	(Coulomb)	Buzzer	On
	SIGNAL I/O Judgment method		The Upper-FAIL signal is generated continuously until a STOP signal is received.
			A discharge pulse count greater than or equal to the upper limit is measured.
	UPPER FAII	. Display	"Upper-FAIL (Pulse)" is displayed.
	(Pulse)	Buzzer	On
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.
		Judgment method	Upper-FAIL does not happen after the test time has elapsed.
		Display	"PASS" is displayed.
	PASS	Buzzer	On
		SIGNAL 1/0	The PASS signal is generated for the length of time specified by the Pass Hold setting.
	SIGNAL I/O		If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.
Jpper current lim	it		50 mA (with no calibration)
Jpper limit of elec	Jpper limit of electric charge Setting range		1 pC to 10000 pC
Upper Coulomb)		Accuracy	As per the accuracy of electric charge measurement
Pulse count judgm Upper Pulse Cou		2	1 to 100000 (with no calibration)

[Timer function]

Item	TOS9301PD
Voltage rise time (Rise Time) setting range	0.1 s to 200.0 s
Voltage fall time (Fall Time) setting range *1	0.1 s to 200.0 s, OFF
Test time setting range	0.1 s to 1000.0 s, OFF
Accuracy	±(100 ppm of setting + 20 ms) (excluding Fall Time)

*1 This setting is used only when PASS judgment occurs.

[Other specifications]

Item		TOS9301PD
Analog monitor*1		Outputs a voltage signal according to the current waveform, voltage waveform, or electric discharge waveforms.
	V	Voltage waveform: Scale 1kV/1V
	Qpd	Electric discharge: Full scale of the scale measurement range/10 V
Ipd*2		Partial discharge current waveform

*1 Monitor signal output is isolated from the chassis (earth).

*2 The lpd waveforms are the ones that can be obtained after the actual discharge waveforms have passed the TOS9301PD measurement filter. Therefore, the scale varies according to the frequency response of the discharge waveform.

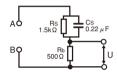
Electrical Safety Multi-analyzer

Leakage Current Test

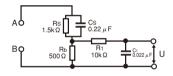
[Measurement function]

Item				TOS9303LC	
	TC			Touch current measurement	
		Measurement mode		Uses a measurement circuit network representing the impedance of a human body and measures the voltage drop across a reference resistance to calculate the touch current.	
			Enc - Pe	A terminal: measurement terminal (for connecting to the enclosure of the EUT) B terminal: open	
		Probe settings	Enc - Enc	A and B terminals: measurement terminal (for connecting to the enclosure of the EUT)	
		1 100c settings	Enc - Liv	A terminal: measurement terminal (for connecting to the enclosure of the EUT)	
			Enc - Neu	B terminal: open	
Measurement				Protective conductor current measurement	
Item	PCC	Measurement method		Measures the voltage drop across a reference resistance inserted in the middle of the protective ground line to calculate the protective conductor current. The measurement impedance is 150Ω .	
	Detient			Patient leakage current measurement	
	Patient	Measurement method		Uses a network conforming to IEC 60601 and measures the voltage drop across a reference resistance to calculate the patientleakage current	
				Measures the current flowing or voltage applied across the A and B terminals (simultaneous measurement not possible).	
	Meter	Measurement	Current measurement	Uses a measurement circuit network representing the impedance of a human body and measures the voltage drop across a reference resistance to calculate the current flowing across the A and B terminals.	
		method	Voltage measurement	Measures the voltage applied across the A and B terminals.	
			DC	Eliminates AC components and measures only the DC component.	
Current measuren	nent mode		RMS	Measures the true rms value (switch AC and AC+DC)	
			Peak *1	Measures waveform peak values	

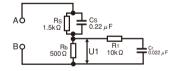
*1 Current measurements may not be stable due to the effects of the power supply line waveform or the wiring environment between the product and the EUT.

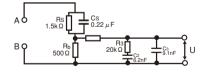

TOS9300 SERIES Electrical Safety Multi-analyzer

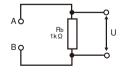
[Measurement circuit network]

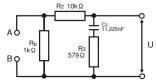

Item		TOS9303LC
	A (IEC 60990 compliant) *1	$(1.5 \text{ k}\Omega // 0.22 \mu\text{F}) + 500 \Omega$, reference measurement element: 500Ω
	B (IEC 60990 compliant)	$(1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ k\Omega \ / \ 0.22 \ \mu F) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement U1 and U3 switchable (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement element: 500 \ \Omega, voltage measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ k\Omega + 22 \ n F), reference measurement (1.5 \ n H) + 500 \ \Omega \ / \ (10 \ n H) + 500 \ \Omega \ / \ (10 \ n H) + 500 \ \Omega \ / \ (10 \ n H) + 500 \ \Omega \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 500 \ / \ (10 \ n H) + 50$
	C (IEC 60990 compliant)	$(1.5 k\Omega // 0.22 \mu F) + 500 \Omega // (10 k\Omega + (20 k\Omega + 6.2 nF) // 9.1 nF), reference measurement element: 500 \Omega, voltage measurement U1 and U3 switchable$
	D (Electrical Appliances and Materials Safety Act, etc.)	1 k Ω , reference measurement element: 1 k Ω
	E (Electrical Appliances and Materials Safety Act)	$1 \text{ k}\Omega // (10 \text{ k}\Omega + 11.225 \text{ nF} + 579 \Omega)$, reference measurement element:1k Ω
Network	F (UL and the like)	$1.5 \text{ k}\Omega // 0.15 \mu\text{F}$, reference measurement element: $1.5 \text{ k}\Omega$
	G	$2 k\Omega$, reference measurement element: $2 k\Omega$
	H (IEC 61010-1)	375 Ω // 0.22 μF + 500 $\Omega,$ reference measurement element: 500 Ω
	I (Patient, IEC 60601-1wet)	$1~k\Omega$ // $10~k\Omega$ + 0.015 $\mu F,$ reference measurement element: $1~k\Omega$
	J (through)	For voltmeter calibration
	PCC-1	150 Ω , reference measurement element: 150 Ω
	PCC-2 (IEC 60598-1)	150 Ω // 1.5 μ F, reference measurement element: 150 Ω
Network consta	ant tolerance	Resistance: ± 0.1 %, capacitor 0.15 μ F: ± 2 %, others: ± 1 %

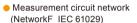
*1 Current measurements may not be stable due to the effects of the power supply line waveform or the wiring environment between the product and the EUT.

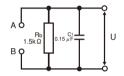

 Measurement circuit network (NetworkA IEC 60990 Fig. 3 U1 measurement)

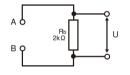

 Measurement circuit network (NetworkB IEC 60990 Fig. 4 U2 measurement)

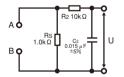

 Measurement circuit network (NetworkB1 IEC 60990 Fig. 4 U1 measurement)


 Measurement circuit network (NetworkC IEC 60990 Fig. 5 U3 measurement)

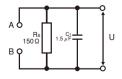



 Measurement circuit network (NetworkD Electrical Appliances and Materials Safety Act etc.)


 Measurement circuit network (NetworkE Electrical Appliances and Materials Safety Act etc.)



 Measurement circuit network (NetworkG IEC 60745)


 Measurement circuit network (NetworkI IEC 60601-1)

 Measurement circuit network (NetworkPCC-1)

 Measurement circuit network (NetworkPCC-2 IEC60598-1)

Electrical Safety Multi-analyzer

[Measurement section] The range varies by network

Item				TOS9303LC
	Range 1			DC, RMS: 1.00 µA(min.) to 200.00 µA(max), Peak: 1.00 µA(min.) to 282.00 µA(max)
	Range 2			DC, RMS: 12.50 µA(min.) to 2000.0 µA(max), Peak: 17.50 µA(min.) to 2830.0 µA(max)
	Range 3			DC, RMS: 125.0 µA(min.) to 20.000 mA(max), Peak: 175.0 µA(min.) to 28.300 mA(max)
	Range 4			DC, RMS: 1.250 mA(min.) to 100.00 mA(max), Peak: 1.750 mA(min.) to 100.00 mA(max)
	Range switching			Auto or Fix selectable. If a measurement falls outside the measurement range of each range, the measured value blink
Measurement range	Kange swi	tening		as a warning.
*1		Auto		The range is set automatically according to the measurements.
1		Fix		For TC and PCC measurements, the measurement range is selected automatically according to the UPPER value.
		FIX		For meter measurements, the range is fixed to the specified range.
	Bandwidth	switchin	σ	Can be expanded to a bandwidth that allows measurements from 0.1 Hz, which is required in the measurement of
	Bundwidd			medical instruments and the like.
		Normal		Normal measurement bandwidth: 15 Hz to 1 MHz
		Expand		Expands the measurement range to 0.1 Hz to 1 MHz
		DC		±(5.0 % of reading + 2 μA)
			$0.1 \text{ Hz} \le f < 15 \text{ Hz}$	$\pm(10.0$ % of reading + 2 μ A)
		RMS	$15 \text{ Hz} \le f \le 100 \text{ kHz}$	±(7.0 % of reading + 2 μA)
	Range 1		$100 \text{ kHz} \le f \le 1 \text{ MHz}$	$\pm(10.0$ % of reading + 2 μ A)
	Runge I		$0.1 \text{ Hz} \le f < 15 \text{ Hz}$	±(10.0 % of reading + 10 μA)
		Peak	$15 \text{ Hz} \le f \le 1 \text{ kHz}$	±(10.0 % of reading + 10 μA)
			$1 \text{ kHz} \le f \le 100 \text{ kHz}$	±(10.0 % of reading + 10 μA)
			$100 \text{ kHz} \le f \le 1 \text{ MHz}$	±(20.0 % of reading + 10 μA)
		DC		±(5.0 % of reading + 20 μA)
	Range 2	RMS	$0.1 \text{ Hz} \le f \le 15 \text{ Hz}$	±(10.0 % of reading + 10 μA)
			$15~\text{Hz}{\leq}f{\leq}100~\text{kHz}$	\pm (7.0 % of reading + 8 μ A)
			$100 \text{ kHz} \le f \le 1 \text{ MHz}$	$\pm(10.0$ % of reading + 10 μ A)
		Peak	$0.1~Hz \leq f < 15~Hz$	$\pm(10.0$ % of reading + 10 μ A)
			$15 \text{ Hz} \le f \le 1 \text{ kHz}$	±(10.0 % of reading + 10 μA)
Fotal accuracy *2		1 cur	$1 \text{ kHz} \le f \le 100 \text{ kHz}$	$\pm(10.0$ % of reading + 10 μ A)
when network A, B, or			$100 \text{ kHz} \le f \le 1 \text{ MHz}$	±(20.0 % of reading + 10 μA)
C is used) *3		DC		$\pm(5.0 \% \text{ of reading} \pm 50 \ \mu\text{A})$
5 15 doed) 5			$0.1~Hz \leq f \leq 15~Hz$	$\pm(10.0$ % of reading + 20 μ A)
		RMS	$15~\mathrm{Hz}{\leq}f{\leq}100~\mathrm{kHz}$	\pm (7.0 % of reading + 20 μ A)
	Range 3		$100 \text{ kHz} \le f \le 1 \text{ MHz}$	±(10.0 % of reading + 20 μA)
	Kange 5		$0.1~Hz \leq f \leq 15~Hz$	±(10.0 % of reading + 50 μA)
		Peak	$15~\mathrm{Hz}{\leq}f{\leq}1~\mathrm{kHz}$	$\pm (7.0 \% \text{ of reading} \pm 50 \ \mu\text{A})$
		reak	$1 \text{ kHz} \le f \le 100 \text{ kHz}$	±(10.0 % of reading + 50 μA)
			$100 \text{ kHz} \le f \le 1 \text{ MHz}$	±(20.0 % of reading + 50 μA)
		DC		±(5.0 % of reading + 0.5 mA)
			$0.1 \text{ Hz} \le f \le 15 \text{ Hz}$	±(10.0 % of reading + 0.2 mA)
		RMS	$15~\text{Hz}{\leq}f{\leq}100~\text{kHz}$	±(7.0 % of reading + 0.2 mA)
	Danas 4		$100 \text{ kHz} \le f \le 1 \text{ MHz}$	±(10.0 % of reading + 0.2 mA)
	Range 4		$0.1 \text{ Hz} \le f < 15 \text{ Hz}$	±(10.0 % of reading + 0.5 mA)
		Deals	$15 \text{ Hz} \le f \le 1 \text{ kHz}$	±(7.0 % of reading + 0.5 mA)
		Peak	$1 \text{ kHz} \le f \le 100 \text{ kHz}$	±(10.0 % of reading + 0.5 mA)
			$100 \text{ kHz} \le f \le 1 \text{ MHz}$	$\pm (20.0 \% \text{ of reading} + 0.5 \text{ mA})$
nput resistance				$1 \text{ M}\Omega \pm 1 \%$
nput capacitance				200 pF or less (internal voltmeter input capacitance: 100 pF or less)
Common mode rejection	n ratio			10 kHz or less: 60 dB or more, 10 kHz to 1 MHz: 40 dB or more
Offset cancel function				Cancels up to 10 mA of the unnecessary current from measurements. OFF function available.

*1 Voltmeter band expansion is possible when network I is selected.

*2 0.1 Hz \leq f < 15 Hz is for when voltmeter band expansion (VoltMeter BandWidth) is set to Expand. Requires at least 120 second of test time.

*3 A value converted to current for measurements using Network A, B, C or H with voltmeter accuracy of this product as the reference.

If a network other than A, B, C or H is used, calculate as follows:

For Network D, E, or I, the \blacksquare part of $\pm(\Box\%$ of reading $\pm \blacksquare A)$ is half the value.

For F, the part is one-third the value.

For G, the **a** part is one-fourth the value.

For PCC-1 or PCC-2, the part is 3.3 times the value.

Electrical Safety Multi-analyzer

[Judgment function] The range varies by network

Item			TOS9303LC
			Judgment starts after the judgment delay (Judge Delay). Buzzer volume level can be set in the range of 0 (OFF) to 10 for pass and fa
	[1	separately. In an auto test, the buzzer is valid only for the judgment that takes place at the end of the program.
		Judgment method	UPPER FAIL results when a current greater than or equal to the upper limit (Upper) is detected.
	UPPER FAIL	Display	"Upper-FAIL" is displayed.
		Buzzer	On The United States and the strength of the STOD size of instances in the
		SIGNAL I/O	The Upper-FAIL signal is generated continuously until a STOP signal is received.
Behavior based		Judgment method Display	LOWER FAIL results when a current less than or equal to the lower limit (Lower) is detected. "Lower-FAIL" is displayed.
on judgment	LOWER FAIL	Buzzer	On
		SIGNAL I/O	The Lower-FAIL signal is generated continuously until a STOP signal is received.
		Judgment method	PASS judgment is made if Upper-FAIL or Lower-FAIL has not occurred when the test time elapses.
		Display	"PASS" is displayed.
	PASS	Buzzer	On (fixed to 50 ms)
			The PASS signal is generated for the length of time specified by the Pass Hold setting.
		SIGNAL I/O	If Pass Hold is set to Infinity, the PASS signal is generated continuously until a STOP signal is received.
	RANGE 1	1	DC, RMS: 0.1 µA(min.) to 200 µA(max), Peak: 0.1 µA(min.) to 282 µA(max)
Jpper Setting	RANGE 2		DC, RMS: 15.1 µA(min.) to 2.00 mA(max), Peak: 21.3 µA(min.) to 2.83 mA(max)
ange	RANGE 3		DC, RMS: 151 µA(min.) to 20.00 mA(max), Peak: 213 µA(min.) to 28.3 mA(max)
	RANGE 4		DC, RMS: 1.51 mA(min.) to 100 mA(max), Peak: 2.13 mA(min.) to 100 mA(max)
ower Setting rai	nge		A value that is -1 digit from the upper setting range.
udgment accura	cy		Conforms to total accuracy(Read "reading" as "upper setting" of total accuracy.)
Fimer function	on]		
em			TOS9303LC
	Later Data X	Setting range	1 s to 1000 s, OFF
udgment delay (.	Judge Delay)	Accuracy	±(100 ppm of setting + 20 ms)
		Setting range	1 s to 1000 s, OFF
lest time		Accuracy	$\pm(100 \text{ ppm of setting} \pm 20 \text{ ms})$
Other specific	cations]		
em			TOS9303LC
			Displays the estimated current converted with the preset supply voltage (Conv Voltage), based on the voltage supplied to the EUT
Valtana annuarai	~		the measured current. (This is invalid in meter mode.)
/oltage conversion	on	Setting range	80.0 V to 300.0 V, OFF
		Resolution	0.1 V
ower supply line	e polarity selection		Set the polarity of the power supply line to supply to the EUT to positive or negative.
Single fault mode	e (Condition) selection	1	Set the EUT single fault mode to normal, neutral line disconnection (Fault Neu),
ingie iuuit moue	(conumon) selection	•	or protective ground wire disconnection (Fault PE).
Fround check			In the touch current test between the enclosure and power supply line, if the EUT enclosure is grounded,
			CONTACT FAIL occurs.
Measurement che	eck		Checks the measurement function by shorting across the A and B terminals.
		Measurement range	If an error is found, the protection function is activated. 80.0 V to 250.0 V
Supply voltage m	easurementAC LINE	Resolution	0.01 V
EUT)		Accuracy	$\pm (3\% \text{ of reading} \pm 1 \text{ V})$
		Measurement range	0.1 A to 15.00 A
	easurementAC LINE	Measurement range Resolution	0.1 A to 15.00 A
	easurementAC LINE	Resolution	0.001 A
EUT)		Resolution Accuracy	0.001 A ±(5 % of reading + 30 mA)
EUT)	easurementAC LINE ent(active power)	Resolution Accuracy Measurement range	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W
EUT)		Resolution Accuracy Measurement range Accuracy	0.001 A ±(5 % of reading + 30 mA)
EUT)		Resolution Accuracy Measurement range Accuracy DC	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1)
EUT) Power measurem	ent(active power)	Resolution Accuracy Measurement range Accuracy DC	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V
EUT) lower measurem /oltage	ent(active power)	Resolution Accuracy Measurement range Accuracy DC RMS	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V
EUT) Power measurem /oltage neasurement	ent(active power)	Resolution Accuracy Measurement range Accuracy DC RMS	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V
EUT) Power measurem /oltage neasurement across the A and	ent(active power) Measurement range Input impedance	Resolution Accuracy Measurement range Accuracy DC RMS	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ
EUT) Power measurem /oltage neasurement cross the A and	ent(active power) Measurement range Input impedance Accuracy *1	Resolution Accuracy Measurement range Accuracy DC RMS	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO)
EUT) Power measurem /oltage neasurement cross the A and	ent(active power) Measurement range Input impedance Accuracy *1	Resolution Accuracy Measurement range Accuracy DC PRMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights.
EUT) Power measurem /oltage neasurement cross the A and	ent(active power) Measurement range Input impedance Accuracy *1	Resolution Accuracy Measurement range Accuracy DC RMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V
EUT) ower measurem Voltage neasurement cross the A and	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection	Resolution Accuracy Measurement range Accuracy DC RMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF
EUT) ower measurem Voltage neasurement cross the A and	ent(active power) Measurement range Input impedance Accuracy *1	Resolution Accuracy Measurement range Accuracy DC Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V
ower measurem oltage easurement cross the A and termi-nals	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage	Resolution Accuracy Measurement range Accuracy DC RMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V
ower measurem oltage easurement cross the A and termi-nals	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current	Resolution Accuracy Measurement range Accuracy DC PRMS Peak Setting range Resolution Between the A and B terminals Between the terminals and chassis	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA
ower measurem foltage neasurement cross the A and t termi-nals	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ	Resolution Accuracy Measurement range Accuracy DC PRMS Peak Setting range Resolution Between the A and B terminals Between the terminals and chassis ory	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II
ower measurem foltage neasurement cross the A and t termi-nals	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal disp	Resolution Accuracy Measurement range Accuracy DC PRMS Peak Setting range Resolution Between the A and B terminals Between the terminals and chassis ory	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display.
EUT) 'ower measurem 'oltage neasurement cross the A and b termi-nals Measurement	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal disp 110% terminal	Resolution Accuracy Measurement range Accuracy DC RMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V 4(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display. A terminal for supplying the voltage applied to the AC LINE IN inlet.
EUT) Power measurem Poltage neasurement cross the A and B termi-nals Measurement	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal disp 110% terminal	Resolution Accuracy Measurement range Accuracy DC RMS Peak	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display.
EUT) /oltage neasurement cross the A and 8 termi-nals /leasurement erminal	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal Nominal voltage range	Resolution Accuracy Measurement range Accuracy DC RMS Peak Setting range Resolution Between the A and B terminals Between the terminals and chassis ory lay	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display. A terminal for supplying the voltage applied to the AC LINE IN inlet. 100 v to 240 V, 50 Hz/60 Hz
EUT) /ower measurem /oltage neasurement cross the A and 8 termi-nals /easurement erminal Power supply for	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal disp 110% terminal Nominal voltage range (allowable voltage range)	Resolution Accuracy Measurement range Accuracy DC Peak Setting range Resolution Between the A and B terminals Between the terminals and chassis ory lay ange	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display. A terminal for supplying the voltage applied to the AC LINE IN inlet. 100 V to 240 V, 50 Hz/60 Hz 85 Vac to 250 Vac
EUT)	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal Nominal voltage range (allowable voltage range) Rated output capac	Resolution Accuracy Measurement range Accuracy DC Pass Setting range Resolution Between the A and B terminals Between the terminals and chassis ory lay nge ange) ity	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display. A terminal for supplying the voltage applied to the AC LINE IN inlet. 100 V to 240 V, 50 Hz/60 Hz 85 Vac to 250 Vac
EUT) /ower measurem /oltage neasurement cross the A and 8 termi-nals /easurement erminal Power supply for	ent(active power) Measurement range Input impedance Accuracy *1 SELV detection Rated voltage Rated current Measurement categ Valid terminal disp 110% terminal Nominal voltage range (allowable voltage range)	Resolution Accuracy Measurement range Accuracy DC Pass Setting range Resolution Between the A and B terminals Between the terminals and chassis ory lay nge ange) ity	0.001 A ±(5 % of reading + 30 mA) 10 W to 1500 W ±(5 % of reading + 8 W) (with the supply voltage at 80 V or more, at a load power factor of 1) 10.00 V to 300.0 V 10.00 V to 300.0 V 15.00 V to 430.0 V Approx. 40 MΩ ±(3 % of reading + 2 V) (measurement range fixed to AUTO) Set a voltage for detecting SELV. When the value is exceeded, the DANGER LED lights. 10.0 V to 99.9 V, OFF 0.1 V 250 V 250 V 100 mA CAT-II Terminals valid for measurement are indicated on the display. A terminal for supplying the voltage applied to the AC LINE IN inlet. 100 V to 240 V, 50 Hz/60 Hz 85 Vac to 250 Vac

Electrical Safety Multi-analyzer

Interface (Common)

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC
					option to remotely con	trol the starting and st	topping of tests.	
REMOTE			Remote control box RC01-TOS, RC02-TOS					
		High voltage test probe HP01A-TOS, HP02A-TOS (when the test voltage is 4 kVac 5 kVdc or less)						
SIGNAL I/O	SIGNAL I/O			tor. For the pin arrange				
					ries, recall auto test pro			
	Function				nent results, monitor th	e step execution statu	s of auto tests, monito	the activation status
			of protection function					
	Input specificat	ions			The input terminal is pu		resistor.	
			<u> </u>	minal open is equivale	nt to applying a high lev	el signal.		
		High-level input voltage	11 V to 15 V					
		Low-level input voltage	0 V to 4 V					
		Low-level input current	-5 mA max.					
		Input time width	5 ms min.					
		Output method	Open collector outpu	t (4.5 Vdc to 30 Vdc)				
	Output	Output withstanding voltage	30 Vdc					
	specifications	Output saturation voltage	Approx. 1.1 V (25 °C)				
		Maximum output current	400 mA(TOTAL)					
STATUS OUT			Output terminal of an option product.					
	Positive terminal (red)		Outputs +24 V. Use Status Out of CONFIG settings to set the output conditions.					
	Negative terminal (black)		+24 V circuit common.					
SCANNER			MINI DIN 8-pin connector. Terminal for the optional TOS9320 high voltage scanner.					
SCANNER			The maximum number of connections is 4 devices(16 channels).					
USB (host)				et, FAT32, 32 GB or le				
056 (1031)			Complies with the USB 2.0 specifications; data rate: 12 Mbps (full speed)					
Remote control			All functions except turning on and off the power, key lock, and auto test can be remotely controlled.					
				or (EIA-232D complian				
	RS232C	Hardware	· · · · ·	0, 38400, 57600, 11520	1			
	102020				none, flow control: no	ne/CTS-RTS		
		Message terminator	0 1 /	LF during transmission				
		Hardware	• •		he USB 2.0 specification	ons; data rate: 480 Mb	ps (high speed)	
	USB (device)	Message terminator	•	ception, LF + EOM du	-			
		Device class	1	SBTMC-USB488 devic	1			
		Hardware	/		. Auto-MDIX complian	t.IPv4, RJ-45 connect	tor.	
		Compliant standards	LXI 1.5 Core Specific	cation 2011				
	LAN	Communication protocol	VXI-11, HiSLIP, SCF	PI-RAW, SCPI-Telnet				
		Message terminator			on, LF + END during tr	ansmission.		
		wiessage terminator		ng reception, LF during	transmission.			
Display			7-inch LCD					

Other Functions (Common)

Item		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Auto test		Auto execution by co	Auto execution by combining ACW, DCW, IR, and EC. For LC, a combination is possible only using TC, PCC, and Patient.						
	Setup memory	Up to 51 test condition	ns (ACW, DCW, IR, E0	C, LC, PD) can be save	d.				
Test condition memory	Program(except LC tests)	Up to 100 program (A	CW, DCW, IR, EC, PE) combinations, each o	containing 100 steps, c	an be saved.			
	Program(LC tests only)	Up to 100 program (7	C, PCC, Patient) comb	inations, each containi	ng 100 steps, can be sa	ved.			
	Program memory(except LC tests)	Up to 25 program (A	CW, DCW, IR, EC, PD)	combinations, each co	ontaining 100 steps, ca	n be saved.			
	Program memory (LC tests only)	Up to 24 program (To	C, PCC, Patient) combin	nations, each containin	g 100 steps, can be sav	ed.			
Test result memor		Records up to 1000 la	test test result of indep	endent tests and auto t	ests. These are cleared	when the power is turn	ned off. Test results		
Test result memor	y	can be saved in CSV	format to a USB memo	y device.					
System clock		For recording the cal	bration time and test ti	mes					
	Recordable time	Up to year 2038	Up to year 2038						
	Calibration period setting	Displays a warning a	Displays a warning at power-on when the specified period passes. Select whether to activate a protection function or only display a						
	Canoration period setting	warning in the displa	warning in the display area when a warning occurs.						
Measurement disp	olay	Maximum and minin	Maximum and minimum measurements can be displayed.						
	Normal	Displays measurement	Displays measurements during a test. Maximum and minimum values are not held.						
	Maximum and minimum value display		Displays the maximum current measurement for withstanding voltage (ACW/DCW) tests, the minimum resistance measurement for						
		insulation resistance	(IR) tests, the resistanc	e measurement or volta	age measurement for e	arth continuity (EC) te	sts.		
	Double Action	· ·	When you press STOP, "READY" is shown for 0.5 seconds. A test starts only when you press START within this period.						
Test start method	Momentary	Tests are only executed while the START switch is held down.							
	Start Long	A test starts only whe	A test starts only when the START switch is held down for at least 1 second.						
PASS judgment di	splay time (Pass Hold)	Set the time to hold the	Set the time to hold the pass judgment result display (0.05 s to 10.00 s) or hold it until STOP is pressed (Infinity).						
STOP signal disable (Fail Mode)			It is possible to set the instrument so that fail judgment results and PROTECTION mode cannot be released from a device connected to the SIGNAL I/O connector or REMOTE connector.						
Key lock		Lock the operation of	the keys to prevent cha	Lock the operation of the keys to prevent changing the settings or overwriting memory or programs by mistake.					

Electrical Safety Multi-analyzer

Other Functions (Common)

Item		TOS9300 TOS9301 TOS9301PD TOS9302 TOS9303 TOS9303LC
Protection functions		If a protection function is activated during a test, the output is shut off and the test is stopped immediately. In an LC test, the power supply to the EUT is stopped, and the A and B terminals are opened. Conditions that cause a protection function to be activated are as follows.
	Interlock	Interlock is activated.
	Power Supply	There is an error in the power supply section.
Output Error	An output voltage outside of the following range is detected. ACW, DCW, IR test, PD test: ±(10 % of setting + 50 V) EC test: ±(10 % of setting + 2 A)	
	Over Load	An output power or output current outside of the following range is detected. ACW: 550 VA, DCW: 110 W or 50 mA, IR (7200 V test): 110 W or 25 mA, IR (-1000 V test): 2 mA, EC: 240 VA, LC: AC LINE OUT current at approx. 15.7 A or power at 1600 VA.
	Over Heat	The internal temperature of the product is abnormally high.
	Over Rating	During a withstanding voltage test, an output current is generated for a length of time that exceeds the output time limit
	Cal	The preset calibration period is exceeded.
	Remote	The REMOTE connector is connected or disconnected.
	Signal I/O	There is a change in the SIGNAL I/O connector's ENABLE signal.
	Communication	An internal communication error is occurring.
	Over Range	A value exceeding the maximum value of the measurement range is detected.
	Measure	An error is detected in the LC test measurement check.
	Short	A relay operation error is detected in an LC test.
	Earth Fault	When the grounding mode (GND) is set to Guard, abnormal current flows from the high voltage output of this product to ground.
	Scan I/F	While scanning, the interface cable is disconnected. Or, the channel-assigned scanner is not detected.

General Specifications (Common)

Item			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
Backup battery	life		3 years (at 25 °C)							
Installation location		Indoors, 2000 m or le	Indoors, 2000 m or less							
Environment	Spec guara-	Temperature	5 °C to 35 °C (41 °F to 95 °F) (18°C to 28°C for partial discharge tests)							
	nteed range	Humidity	20 %rh to 80 %rh (20%rh to 70%rh for partial discharge tests) (no condensation)							
	Our section and	Temperature	0 °C to 40 °C (32 °F t	to 104 °F)						
	Operating rang	Humidity	20 %rh to 80 %rh (no	condensation)						
	<u>.</u>	Temperature	-20 °C to 70 °C (-4 °F	F to 158 °F)						
	Storage range	Humidity	90 %rh or less (no co	ndensation)						
	Nominal voltag (allowable volta		100 Vac to 120 V, 200	0 V to 240 V (90 Vac to	132 V, 170 V to 250 V)					
Power supply	Power	No load(READY state)	100 VA or less							
	consumption	Rated load	800 VA max.							
	Allowable frequ	aency range	47 Hz to 63 Hz							
Insulation resist	ance (between AC	LINE and chassis)	30 MΩ or more (500	30 MΩ or more (500 Vdc)						
Withstanding vo	oltage (between AC	LINE and chassis)	1500 Vac, 1 minute, 2	20 mA or less						
Earth continuity	r		25 Aac, 0.1 Ω or less							
Weight			TOS9300: Approx. 17 kg (37.5 lb.), TOS9301: Approx. 18 kg (39.7 lb.), TOS9301PD: Approx. 22 kg (48.5 lb.),							
Weight			TOS9302: Approx. 20 kg (44.1 lb.), TOS9303: Approx. 21 kg (46.3 lb.), TOS9303LC: Approx. 22 kg (48.5 lb.)							
				Power cord (1 pc., *length: 2.5 m : The attached power cord varies depending on the shipment destination.) High-voltage test lead (TL31-TOS (1 pair)), SIGNAL I/O plug (1 set), High-voltage warning sticker (1 pc.),						
							ng sticker (1 pc.),			
Accessories			1 (12)	Setup Guide (1 copy), CD-ROM (1 disc), Safety Information (1 copy), Heavy object warning label (1 pc., *Not included with the TOS9300)						
							(value)			
				Test leads for earth continuity test (TL13-TOS (1 pair., *TOS9302, TOS9303, TOS9303LC only)) [TOS9303LC only: Spare fuse (1 pc.), Test leads for leakage current test (2 red, 1 black), Flat probe (1 sheet)]						
					wing directive and stand					
			EMC Directive 2014/							
			EN 61326-1 (Class A	*3), EN 55011 (Class A	*3, Group 1 *4), EN 6	1000-3-2, EN 61000-3	-3			
Electromagnetic	Electromagnetic compatibility *1 *2			following conditions						
			0	0	ng connected to the pro					
				U U	using the SIGNAL I/O.T	0 0	ead			
				•	e applied only to the EU					
Safety *1			1	1	wing directive and stand					
Surety		Low Voltage Directive 2014/35/EU *2, EN 61010-1 (Class I *5, Pollution Degree 2 *6)								

*1 Does not apply to specially ordered or modified products.

*2 Only on models that have CE/UKCA marking on the panel.

*3 This is a Class A instrument. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

*4 This is a Group 1 instrument. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.

*5 This is a Class I instrument. Be sure to ground this product's protective conductor terminal. The safety of this product is guaranteed only when the product is properly grounded.

*6 Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

Electrical Safety Multi-analyzer

High Voltage Scanner

[Basic specifications]

Item		TOS9320
Maximum operating voltage	AC	5 kV
Maximum operating voltage	DC	7.2 kV
Number of channels		4 (Each channel can be set to high, low, or open.)
		4 units
Maximum connections		Channel numbers are assigned according to the order in which connections are made to the TOS9300 series tester.
		1st scanner: CH1 to CH4, 2nd scanner:CH5 to CH8, 3rd scanner: CH9 to CH12, 4th scanner: CH13 to CH16
Contact check function		Available
	DANGER	Lights in sync with the TOS9300 series tester
Indicators	CHANNEL	Indicates the setting of each channel with color. Red: High, Green: Low, Orange: Contact being checked, Off: Open
Indicators	EXTERNAL	Lights when external control is on
	POWER	Lights when the power is on

[Interface and other functions]

Item			TOS9320
Control switch	Control switch		EXTERNAL I/O switch for switching the following controls. ON: External control through the CONTROLLER INTERFACE OFF: Control from the TOS9300 series tester
CONTROLLER I	NTERFACE (ex	ternal control)	D-sub 25-pin connector.
	Function		Sets each channel to high or low or all channels to open. Outputs the setting of each channel.
			The input signals are all low-active control. The input terminal is pulled up to +12 V by a resistor. Leaving the input terminal open is equivalent to applying a high level signal.
	. .	High-level input voltage	11 V to 15 V
	Input	Low-level input voltage	0 V to 4 V
		Low-level input current	-5 mA max.
		Input time width	5 ms min.
		Output method	Open collector output (4.5 Vdc to 30 Vdc)
	Output	Output withstanding voltage	30 Vdc
	Output	Output saturation voltage	Approx. 1.1 V (25°C, 77°F)
		Maximum output current	400 mA (TOTAL)
TOS9300 series to	ster interface		MINI DIN 8-pin connector. Accuracy guaranteed up to 4 units (16 channels)

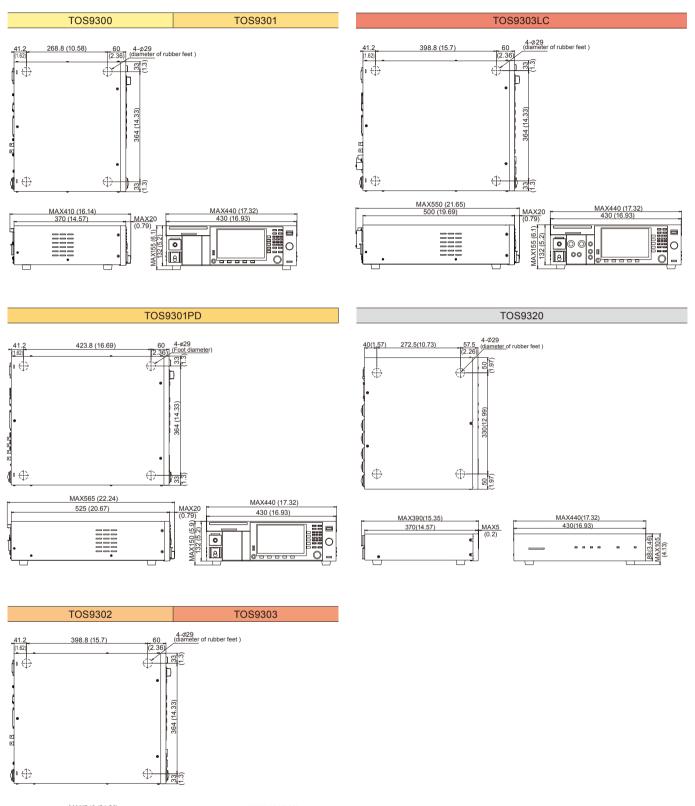
[General specifications]

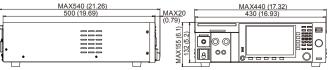
Item			TO\$9320			
	Installation location	1	Indoors, 2000 m or less			
	Spec guaranteed	Temperature	5°C to 35°C (41°F to 95°F)			
Environment	range	Humidity	20%rh to 70%rh (no condensation)			
	0	Temperature	0°C to 40°C (32°F to 104°F)			
	Operating range	Humidity	20%rh to 80%rh (no condensation)			
	<u></u>	Temperature	-20°C to 70°C (-4°F to 158°F)			
	Storage range	Humidity	90%rh or less (no condensation)			
D 1	Nominal voltage ran (allowable voltage r	•	100 Vac to 240 Vac (90 Vac to 250 Vac)			
Power supply	Power consumption		50 VA max.			
	Allowable frequenc	y range	47 Hz to 63 Hz			
Insulation resist	ance (between AC LIN	E and chassis)	30 MΩ or more (500 Vdc)			
Withstanding vo	oltage (between AC LIN	NE and chassis)	1500 Vac for 1 minute, 20 mA or less			
Earth continuity	r		25 Aac/0.1 Ω or less			
Weight			Approx. 8 kg (17.6 lb)			
Accessories			Power cord (1 pc., length: 2.5 m: The attached power cord varies depending on the shipment destination.) High-voltage test lead [TL31-TOS] (8 red), Lead for high voltage parallel connection TL33-TOS (1 pair), Interface cable (1 pc.), CONTROLLER INTERFACE plug (1 set), High-voltage warning sticker (2 pc.), Channel labels (For the panel (1 sheet), For the test leads (1 sheet)), User's manual (1 copy), Safety Information (1 copy)			
Electromagnetic compatibility *1 *2			Complies with the requirements of the following directive and standards. EMC Directive 2014/30/EU, EN 61326-1 (Class A *3), EN 55011 (Class A *3, Group 1 *4), EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to this product is less than 2.5 m. A shielded cable is used for the connection to the CONTROLLER INTERFACE. The high-voltage test lead TL31-TOS is in use. Electrical discharges are applied only to the EUT.			
Safety *1			Complies with the requirements of the following directive and standards. Low Voltage Directive 2014/35/EU *2, EN 61010-1 (Class I *5, Pollution Degree 2 *6)			

*1 Does not apply to specially ordered or modified products.

*2 Only on models that have CE/UKCA marking on the panel.

*3 This is a Class A instrument. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.


*4 This is a Group 1 instrument. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.


*5 This is a Class I instrument. Be sure to ground this product's protective conductor terminal. The safety of this product is guaranteed only when the product is properly grounded.

*6 Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

Electrical Safety Multi-analyzer

External Dimensions (Unit:mm(inches))

TOS9213AS Hipot Tester with Insulation Resistance Test

For the insulation testing of PV(Photovoltaic) module

TOS9213AS(DCW/IR) *While Supplies Last

Accompanied with the features and performance of TOS9200 series, and it extends additional features and specifications exclusively applied to the PV module testing.

The TOS9213AS, DC Withstanding Voltage/Insulation Resistance Tester, is the test instrument that can handle the insuration test with high voltage and high resolution required for the evaluation of the PV module, Cable, Connector, and Junction Box. The TOS9213AS is equipped with functions of the DC withstanding voltage testing and the insulation resistance testing accompanied with the features and performance of Kikusui's high-end model TOS9200 series, and it extends additional features and specifications exclusively applied to the PV module testing. Furthermore, the TOS9213AS improves the current measurement accuracy of the DC withstanding voltage testing from the original specification of the TOS9000 series. Up to 10 kV / 5 mA with a maximum output of 50 W in DC withstanding voltage test

GPIB

RS232C

- Perform insulation resistance testing in the range of -25 V to -1500 V / 0.01 MΩ to 9.99 GΩ
- Applies for the testing of IEC61730-2 standard
- High-precision current measurement, 1 µA of the setting resolution for judgement
- Low output ripple of 100V p-p at 10 kV with consideration of capacitive load
- Capable of setting voltage rise rate by Rise Time Control Function, equipped with Discharge Function
- Capable of converting judgements of insulation resistance test into values of resistance and current
- Capable of applying high voltage and monitoring current for PID symptom (–1500 VDC / 100 μA)

TOS9213AS

Hipot Tester with Insulation Resistance Test

Hipot Tester

Output sec	tion(DC)					
Output-vol	tage range	0.05 kV to 10.0 kV DC				
	Resolution	10 V				
	Accuracy	±(1.5% of setting +20 V)				
Maximum	rated load *1	50 W (10 kV/5 mA)				
Maximum	rated current	5 mA				
D' 1	No load at 10kV	100 Vp-р Тур.				
Ripple	Maximum rated load	100 Vp-р Тур.				
Voltage regulation		1% or less [maximum rated load → no load]				
Short-circuit current		40 mA Typ.				
Discharge function		Forced discharge at the end of test (discharge resistance: $500 \text{ k}\Omega$) The discharge time can be set to a value from 0.5 s to 300 s. (*				
Start voltag	ge	The voltage at the start of the test can be set as the start voltage.				
	Setting range	0% to 99% of the test voltage (resolution of 1%)				
Output-vol	tage monitoring function	If the output voltage exceeds \pm (10% of setting + 50 V), output is cut off and the protection function activates.				
Voltmeter						
	Scale	10 kV AC/DC F.S				
Analog	Accuracy	±5% F.S				
	Indicator	Mean-value responsive				
	Measurement range	0.0 kV to 10.5 kV DC				
	Resolution	10 V				
Digital	Accuracy	±(1.0% of reading + 20 V)				
Digital	Response	Mean-value responsive (response time of 200 ms)				
	HOLD function	The voltage measured at the end of test is held during the PASS and FAIL period.				

*1: Limitation on output

The tester's withstanding voltage generator is designed to radiate half as much heat as the rated output, in consideration of the size, weight, cost, and other factors of the tester. It is therefore necessary to use the tester within the ranges specified below. Operations deviating from these ranges may heat the output section excessively, thereby activating the protective circuit. In such a case, suspend the test and wait until the temperature fails to the normal level.

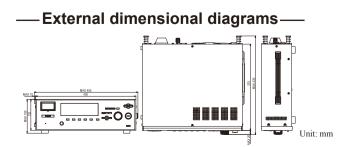
Output limitation in withstanding voltage testing

Ambient temperature		Upper reference	Pause	Output time		
	2.5mA < i		At least as long as the output time	Maximum of 1 minute		
$t \leq 40 \ ^{\circ}C$	DC	$i \leq 2.5 m A$	At least as long as the judgement wait time (WAIT TIME)	Continuous output possible		
[Output time = voltage rise time + test time						

*2: About the discharge time settingIf

you set the discharge time to 0.0 s or if the voltage between the output terminals exceeds approximately 30 V even after the specified discharge time has passed, the TOS9213S will continue discharging until the voltage between the output terminals falls below approximately 30 V.

Ammeter	
Measurement range	0.00 mA to 5.5 mA DC
A	0μA to 2.00mA: ±(3% of reading + 5μA)
Accuracy *3	2.01mA to 5.50mA: ±(3% of reading +10µA)
Response	Mean-value responsive (response time of 200 ms)
Hold function	The measured current at the end of the test is held during the PASS period.


Judgement function	
Setting range for the upper reference	1 µA to 999 µA 1 µA STEP
(UPPER)	1.00 mA to 5.5 0mA 0.01 mA STEP
Setting range for the lower ref-erence	1 µA to 999 µA 1 µA STEP
(LOWER)	1.00 mA to 5.50 mA 0.01 mA STEP
(EOWER)	(With the LOWER OFF function)
Judgement accuracy *3	0 μ A to 2.00 mA: \pm (3% of setting + 5 μ A)
Judgement accuracy 5	2.01 mA to 5.50 mA: \pm (3% of setting + 10 μ A)
Response switching function	The current detection response for UPPER FAIL
Response switching function	judgement can be set to FAST/MID/SLOW (*4)
Time	
	0.4

 Setting range for the voltage rise time (RISE TIME)
 0.1 s to 200 s

 Setting range for the test time (TEST TIME)
 0.3 s to 999 s (With the TIMER OFF function)

*3: When the GND LOW/GUARD setting is set to LOW, the humidity must not exceed 70 % rh.

*4: In the MID and SLOW modes, depending on the discharge method, the voltage monitoring function may operate and the TOS9213S may enter the PROTECTION status before UPPER FAIL detection takes place.

*The highlighted text in red indicates the improved specification exclusively applied to the PV module testing.

Insulation Resistance Tester

Output section								
Output-voltage	range			-25 V to -1	500 V			
		Resolution		1 V				
		Accuracy		±(1.5% of	setting+2 V)			
Maximum rated load			1 W(-1000	V/1 mA), 0.15 W(-1	1500 V/0.1 mA)			
Maximum rated current			1 mA					
D: 1		1 kV no-load	l	2 Vp-p or	less			
Ripple		Maximum ra	ted load	10 Vp-p or	less			
Voltage regulation			1% or less	[Maximum rated lo	ad no load]			
Short-circuit current			12 mA or	ess				
Discharge function			Forced discharge at the end of test (discharge resistance: $25 \text{ k}\Omega$)The discharge time can be set to a value from 0.5s to 300 s.(*2)					
Output-voltage	monito	ring function		If the output voltage exceeds $\pm(10\%$ of the setting + 50 V), output is cut off and the protection function activates.				
Voltmeter								
		Scale		10 kV DC F.S				
Analog		Accuracy		±5% F.S				
		Indicator		Mean-value responsive				
		Measurement range		0 V to -1700 V				
Digital		Resolution		1 V				
		Accuracy		±(1.0% of reading +1 V)				
Resistance met	er							
Measurement r	ange	0.01 MΩ - 9.9	99 GΩ (Wi	thin the max	imum rated current ra	nge of 1 mA to 50 mA)		
Accuracy						1		
		$\Lambda \le i \le 100 \text{ nA}$		i ≤ 200 nA	$200 \text{ nA} \le i \le 1 \mu \text{A}$	$1 \ \mu A \le i \le 1 \ mA$		
	±(20%	% of reading.)	±(10% o	f reading.)	±(5% of reading.)	±(2% of reading.)		
	[In the h	umidity range of	20 % to 70	% R.H (no co	ndensation), with no dist	[i=measured current] urbance such as swinging		

of the test leadwire]

Judgement func	tion				
Judgement meth	nod	The UPPER/LOWER judgement can be switched between the resistance value-based judgement and current value-based judgement. The action for the judgement method by the current valued-based judgement, Display, Buzzer, SIGNAL I/O can be referred to the action in Withstanding Voltage Test Mode.			
Setting range	Resistance value-based judgment	$0.01 \text{ M}\Omega$ to $9.99 \text{ G}\Omega$ [Below the maximum rated current			
for the upper reference(UPPER)	Current value-based judgment	0.1 µA to 1.00 mA			
Setting range for the lower reference	Resistance value-based judgment	$0.01 \text{ M}\Omega$ to 9.99 G Ω [Below the maximum rated curren			
(LOWER)	Current value-based judgment	0.1 µA to 1.00 mA			
Time	•				
Setting range for	the voltage rise time (RISE TIME)	0.1 s to 200 s			
Setting range fo	r the test time(TEST TIME)	0.5 s to 999 s (With the TIMER OFF function)			

General Specifications

Power requirements	Nominal voltage range (Allowable voltage)	100 V to 120 V AC / 200 V to 240 V AC (85 V to 130 V AC / 170 V to 250 V AC) Selectable				
D	Using no load (READY)	100 VA or less				
Power con-sumption	Using the rated load	Maximum of 200 VA				
Allowable frequency ra	nge	47Hz to 63Hz				
Insulation resistance		30 MΩ or more (500 V DC) [between the AC LINE and chassis]				
Withstanding voltage		1390 V AC, 2 seconds, 20 mA or less [between the AC LINE and chassis]				
Earth continuity		25 A AC/0.1 Ω or less				
Safety		Conforms to the requirements of the following standard. IEC 61010-1 Class I Pollution degree 2				
Warranty range	Temperature/ Humidity	5°C to 35°C/20% to 80% rh(No condensation)				
Operating range	Temperature/ Humidity	0°C to 40°C/20% to 80%rh(No condensation)				
Storage range	Temperature/ Humidity	-20°C to 70°C/90 % RH or less (No condensation				
Dimensions(movimum		430[16.93 inch](455[17.91 inch])W×				
Dimensions(maximum	1)	132[5.20 inch](150[5.91 inch])H× 370[14.57 inch](430[16.93 inch])Dmm				
Weight		Approx. 12 kg (Approx. 26.46 lbs)				
Accessory		AC Power cord 1 pc., High-voltage test leadwire TL01-TOS (1.5 m)1 set, Interlock jumper 1 pc., HIGH VOLTAGE DANGER sticker 1 sheet, Fuse 1pc., Operation Manual 1 copy				

Hipot Tester/Hipot Tester with Insulation Resistance Test

TOS5300 SERIES

A new standard for Hipot & Insulation resistance testing Applied to World-Wide input voltage

TOS5301

TOS5300(ACW) TOS5301(ACW/DCW) TOS5302(ACW/IR)

New low-cost standard model that provides thorough operability, reliability and safety.

The "TOS5300 Series" is a series of test instruments used in Hipot tests and insulation resistance tests, two of the four tests regarded as necessary for ensuring the safety of electrical products. With an output of 5 kV/100 mA (AC) and 6 kV/10 mA (DC), the series can be used in Hipot & insulation resistance testing of electronic equipment and electronic parts, based on the requirements of IEC, EN, UL, VDE, JIS, and other international safety standards and the Electrical Appliance and Material Safety Law. Also, the test voltage stability is improved with the adoption of a newly developed switching amplifier. Since the output voltage can be kept constant even when the AC line voltage or frequency changes, consistent testing can be performed, even when the power supply environment is in an unstable region. The TOS5300 is also equipped with a number of features that are capable of meeting a variety of test needs. It is a new low-cost standard model that provides thorough operability, reliability and safety.

 The PWM amp system provides highlystable output

DRIVERS

((

USB

- 5 kV/100 mA (500 VA) AC Hipot test
- 6 kV/maximum output 50 W DC Hipot tester (TOS5301)
- 25 V-1000 V (7 steps), 500 V or greater, up to 5.00 GΩ Insulation Resistance test
- High-precision measurement ±1.5% of reading (with voltmeter 500 V or higher, Ammeter 1 mA or higher)
- Rise time(AC/DC) / Fall time(AC) control
- Key lock function and Protection cover for key operation
- Equipped with USB interface

Hipot Tester/Hipot Tester with Insulation Resistance Test

Basic performance

The achievement of AC Hipot testing with a constant stable output! [Input voltage variation : $\pm 0.3\%$]

A conventional Hipot tester boosts and outputs the AC line's input voltage through the use of a slide transformer. With this slide transformer system, input voltage fluctuations will affect the output, preventing tests from being performed properly. At times, the application of distortion voltage applied to the EUT may cause a failure of new product (accelerating a deterioration of components). Since the TOS5300 Series equips with a high-efficient PWM amplifier that can output a stable high-voltage without being affected by the variation of AC power line, users can perform "safe", "stable", and highly "reliable" tests with confidence, even in regions with large voltage variations.

Realizing high-precision measurement with high-resolution and high-speed judgement

Equipped with a high-accuracy, high-resolution of True RMS measurement circuit, including a Voltmeter with ± 1.5 % of reading (500 V or greater) / minimum resolution of 1 V, and an Ammeter with ± 1.5 % of reading (1 mA or more) / minimum resolution of 1µA. In addition, it is also equipped with an Auto range function, with achieving a judgment accuracy of ± 1.5 % of reading. The Lower limit judgment accuracy achieves a level of performance equivalent to the Upper limit judgment accuracy that enables to detect for such a poor contact or disconnections of test leads. Moreover, it realizes the fast judgment by the test time of 0.1 second, while reliable testing can be performed, thanks to high-precision, high-resolution, high-speed measurement and the judgment functions.

Supporting the World-wide input voltage

Usable in any country, without changing the input power supply.The instrument not rely on the input power environment. Supplying the stable test voltage with 50/60 Hz frequencies.

Reducing the tact time

Reduction of the tact time leads to improve the productivity. However, it has been an issue that reducing the tact time may cause to worsen the measurement accuracy when the test time is faster than the measuring response speed. The TOS5300 series has been achieved to set the test time from 0.1s.

6kV/50WDC Hipot test (Model TOS5301)

Capable to perform DC Hipot test up to 6 kV. (Model TOS5301) Equipped with a stable DC/DC converter with a low-ripple and the load variation of 3% or less.

nsulation resistance test for 25 V to 1000 V* $\,$

The TOS5302 is equipped with an insulation resistance tester. The test voltages can be set from 25V, 50V, 100V, 125V, 250V, 500V and 1000V. And for setting at 500V and above, it can perform the insulation resistance test up to 5.00 G Ω .

*At 500 V and above, measurements up to 5.00 G $\!\Omega$ are possible.

Protection cover prevents physical operation error in the production site

In many cases, workers on electronic equipment production lines and inspection lines are not technical experts. Therefore, it is possible that the operators may change setting conditions and make operation errors. In order to prevent from such cases, the TOS5300 is equipped with a key lock function and a protection cover to disable a physical key operation from the front panel.

New design of output terminal improves safety and functionality

In consideration of safety for the operator and the environment, the output terminal of HIGH-side has been placed in the most distant location from the control area. The free rotation machanisim protects from twisting (or breaking) of the cable. Also, with having the lock function for the LOW terminal on the main unit, the metal plate is no longer attached to the test lead of LOW-side, and it makes to resist damage to the test lead. Because of elimination of these projected components, the TOS5300 can avoid from unexpected accidents such as when the unit travels to other location. And also when the test lead is snagged on something, or unexpected stress is applied on the test lead, the High (High-voltage) test lead is designed to disconnect easily, but the Low (ground) test lead is designed to resist disconnection.

In order to prevent the insertion error, the color coding of the cable are classified to HIGH (red) and LOW (black), and the plug shape of terminal are also different design.

View with the protection cover removed

Hipot Tester/Hipot Tester with Insulation Resistance Test

Unless specified otherwise, the specifications are for the following settings and conditions. The warm-up time is 30 minutes.
TYP:These are typical values. These values do not guarantee the performance of the product.

- rdng: Indicates the readout value.
- set: Indicates a setting.
- f.s: Indicates full scale.

Hipot Tester

			TOS	5300	TOS5301			TOS5302		
	Output rang				0.05 kV to 5.0					
		Accuracy	\pm (2 % of set + 20 V) when no load is connected							
		Setting range			0.00 kV to 5.5	0 kV				
		Resolution			10 V steps					
	Max. rated	output *1			500 VA (5 kV/10	00 mA)				
	Max. rated	voltage			5 kV					
	Max. rated	current		10	0 mA (when the output voltage	ge is 0.5 kV or greate	er)			
AC output	Transforme	r rating			500 VA					
ection	Output volt	age waveform *2			Sine					
		Distortion	If	the output voltage is 0.5	kV or more: 3 % or less (whe	n no load or a pure r	esistive lo	ad is connected).		
	Frequency				50 Hz or 60	Hz				
		Accuracy			±0.5 % (excluding during	voltage rise time)				
	Voltage reg	ulation		10 % or l	ess (when changing from ma	ximum rated load to	no load)			
	Input voltag	e variation		±0.3 % (5 kV v	when no load is connected; po	wer supply voltage:	90 V to 25	50 V)		
	Short-circu	t current		200 m.	A or more (when the output v	oltage is 1.0 kV or g	reater)			
	Output met	hod			PWM switch	ing				
	Output rang	je			0.05 kV to 6.0	0 kV				
		Accuracy			± (2 % of set + When no load is c	· · · · · · · · · · · · · · · · · · ·				
		Setting range			0.00 kV to 6.2	0 kV				
		Resolution			10 V STE	p				
	Max. rated	output *1			50 W (5 kV / 10) mA)				
	Max. rated	voltage			6 kV					
OC output	Max. rated	current			10 mA			_		
ection		5 kV when no			50 Vp-p					
	Ripple(TYP	load is connected	-							
		Max. rated load	-		100 Vp-p					
	Voltage reg	ulation			3% or less (When changing rated load to no					
	Short-circu	t current (TYP)			40 mA (when generation	n 6 kV output)				
	Discharge f	eature			Forced discharge after t (discharge resistance)					
Start Voltag	ge			The voltage at the st	art of withstanding voltage te	sts can be set to 50%	6 of the te	st voltage.		
Limit Volta	ige			The test voltage upp	er limit can be set . AC: 0.00	kV to 5.50 kV, DC:	0.00 kV	to 6.20 kV		
Output volt	tage monitor f	eature		If output voltage exceeds the specified value + 350 V or is lower than the specified value - 350 V, output is turned off, and protective features are activated.						
		Scale			6 kV AC / D0	C f.s				
	Analog	Accuracy			± 5 % f.s					
		Indication		Average value response/rms scale						
Valtar		Measurement range			0.000 kV to 6.500 k	VAC/DC				
Voltmeter		Display			🗆 . 🗆 🗆 k	V				
	Digital	Accuracy		V < 500 V	: ±(1.5 % of reading + 20 V);	$V \ge 500 \text{ V}: \pm 1.5 \%$	of reading	3		
		Response *3		True	e rms, Average value response	/ rms display switch	nable			
		Hold feature		After a test is finished, the	e measured voltage is retained	l until the PASS or F	AIL judg	ment is cleared.		
		Measurement range	AC: 0.00 m	A to 110 mA	AC: 0.00 mA to DC: 0.00 mA to			AC: 0.00 mA to 110) mA	
			i = measured current	i < 1 mA	$1 \text{ mA} \le i \le 10 \text{ mA}$	10 mA ≤ i < 100 i	mA	100 mA≤i		
Ammeter	Digital	Display		0 . 000 mA		mA		000 . 0 mA		
		Accuracy *4		1.00 mA < i	: ±(1.5 % of rdng); i < 1.00 m	A: ±(1.5 % of readir	ng + 30 μ/	A)		
		Response *3			e rms, Average value response		• •	,		
		Hold feature			d, the measured current is reta			1		

Hipot Tester/Hipot Tester with Insulation Resistance Test

Hipot Tester

		TOS5300	TOS5301			TOS5302		
	Judgment	Judg	gment method	Display	Buzzer	SIGNAL I/O		
	UPPER FAIL	the output is turned off, and a an UPPER FAIL judgment occ Time) of DC hipot tests, an U	FAIL LED lights OVER is displayed on the screen	ON	Generates a U-FAIL signal			
	LOWER FAIL	the output is turned off, and This judgment is not perfor	d a LOWER FAIL judgment occurs. med during voltage rise time (Rise	FAIL LED lights UNDER is displayed on the screen	ON	Generates a L-FAIL signal		
	PASS			PASS LED lights	ON	Generates a PASS signal		
• The • The • For	 If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a STOP signal. The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP signal. The FAIL and PASS buzzer volume levels can be changed. For PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. 							
;	AC: 0.	01 mA to 110 mA	AC: 0.01 mA to 110 mA DC: 0.01 mA to 11 mA		AC: 0.0	1 mA to 110 mA		
5	AC: 0.01 mA to 110 mA / OFF			A(AC: 0.01 mA to 110 mA / OFF			
/ *4	$1.00 \text{ mA} \le i: \pm (1.5 \% \text{ of set}), i < 1.00 \text{ mA}: \pm (1.5 \% \text{ of set} + 30 \mu\text{A})$							
nethod	Calculates the current's true rms value and compares this value with the reference value							
	Calibrated with the rms of a sine wave using a pure resistive load							
			0.1 s to 10.0 s					
solution			0.1 s					
		0.1 s		· · · ·				
				,				
solution								
	$\pm (100 \text{ ppm} + 20 \text{ ms}) \text{ excluding Fall Time}$							
			Excluding AC: Fall Time	1 THIC				
	• The • The • For	and and and and and and and and	and and and and and and and and	and If a current that is greater than or equal to the upper limit is detected, the output is turned off, and an UPPER the output is turned off, and an UPPER FAIL judgment also occurs if there is a problem with the voltage rise ratio. and If a current that is less than or equal to the lower limit is detected, the output is turned off, and a LOWER FAIL judgment also occurs. This judgment is not performed during voltage rise time (Rise Time) of all tests and during the voltage fall time (Fall Time) of AC hipot tests. PASS If the specified time elapses without any problems, the output is turned off, and a PASS judgment occurs. • If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS. • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS. • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS. • For PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 secon Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. g AC: 0.01 mA to 110 mA AC: 0.01 mA to 110 mA/DC: 0.01 mA to 110 mA/DC: 0.01 mA to 110 mA/OF DC: 0.01 mA to 10.0 s <tr< td=""><td>and If a current that is greater than or equal to the upper limit is detected, the output is turned off, and an UPPER FAIL judgment occurs. During the voltage rise time (Rise Time) of DC hipot tests, an UPPER FAIL judgment also occurs if there is a problem with the voltage rise ratio. FAIL LED lights and If a current that is less than or equal to the lower limit is detected, the output is turned off, and a LOWER FAIL judgment occurs. This judgment is not performed during voltage rise time (Rise Time) of all tests and during the voltage fise time (FaII Time) of AC hipot tests. FAIL LED lights PASS If the specified time elapses without any problems, the output is unred off, and a PASS judgment occurs. FAIL LED lights • If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a \$2 • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a \$2 • The FAIL and PASS buzzer volume levels can be changed. • FOR PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. g AC: 0.01 mA to 110 mA / OFF AC: 0.01 mA to 110 mA / OFF Ac g *4 1.00 mA ≤ i: ±(1.5 % of set), i < 1.00 mA: ±(1.5 % of set + 30 µA)</td> 0.1 s to 999 s; can be turned off (TIMER OFF) solution 0.1 s to 999 s; can be turned off (TIMER OFF) 0.1 s to 999 s; con ts turned off (TIMER OFF)</tr<>	and If a current that is greater than or equal to the upper limit is detected, the output is turned off, and an UPPER FAIL judgment occurs. During the voltage rise time (Rise Time) of DC hipot tests, an UPPER FAIL judgment also occurs if there is a problem with the voltage rise ratio. FAIL LED lights and If a current that is less than or equal to the lower limit is detected, the output is turned off, and a LOWER FAIL judgment occurs. This judgment is not performed during voltage rise time (Rise Time) of all tests and during the voltage fise time (FaII Time) of AC hipot tests. FAIL LED lights PASS If the specified time elapses without any problems, the output is unred off, and a PASS judgment occurs. FAIL LED lights • If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a \$2 • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a \$2 • The FAIL and PASS buzzer volume levels can be changed. • FOR PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. g AC: 0.01 mA to 110 mA / OFF AC: 0.01 mA to 110 mA / OFF Ac g *4 1.00 mA ≤ i: ±(1.5 % of set), i < 1.00 mA: ±(1.5 % of set + 30 µA)	and If a current that is greater than or equal to the upper limit is detected, the output is turned off, and an UPPER the output is turned off, and an UPPER the output is turned off, and an UPPER FAIL judgment also occurs if Time) of DC hipot tests, an UPPER FAIL judgment also occurs if the output is turned off, and a LOWER FAIL judgment also occurs. FAIL LED lights ON If a current that is less than or equal to the lower limit is detected, the output is turned off, and a LOWER FAIL judgment ecres. FAIL LED lights ON If a current that is less than or equal to the lower limit is detected, the output is turned off, and a LOWER FAIL judgment (East). FAIL LED lights ON If the output is turned off, and a LOWER FAIL judgment (FaIL LED lights). ON ON ON and If the specified time off, and a LOWER FAIL judgment (FaIL Time) of AC hipot tests. FAIL LED lights ON PASS If the specified time elapses without any problems, the output is the sereen PASS LED lights ON • If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a STOP sig • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP sig • The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP is contact. Steven if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. generative for the output is enabled, the buzzer turns off after 0.2 seconds.		

*1: Regarding the output time limits:

Taking size, weight, and cost into consideration, the heat dissipation capability of the voltage generator that is used for hipot tests has been designed to be one half that of the rated output. Use the TOS5300 Series within the following limits. If you use the product in a manner that exceeds these limits, the output section may overheat, and the internal protection circuits may be activated. If this happens, stop testing, and wait until the TOS5300 Series returns to its normal temperature.

Ambient temperature	bient temperature Upper limit		Pause time	Output time		
	AC	50 mA < $i \le 110$ mA Greater than or equal to the output time		30 min. max.		
	AC	$i \le 50 \text{ mA}$	Not necessary	Continuous output possible		
$t \le 40 \ ^{\circ}C$	DC	$5 \text{ mA} \le i \le 11 \text{ mA}$	Greater than or equal to the output time	1 min. max.		
		$i \le 5 mA$	Greater than or equal to the wait time (WAIT TIME)	Continuous output possible		

(Output time = voltage rise time + test time + voltage fall time)

*2: Regarding the test voltage waveform:

Waveform distortions may occur if an DUT whose capacitance is dependent on voltage (for example, an DUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

*3: For both True rms and Mean-value response, 50 ms or above response time is required to satisfy the measurement accuracy.

*4: Regarding ammeter and judgment accuracy:

During AC hipot tests, current also flows in the stray capacitance of items such as the measurement leads and jigs. This current that flows in the stray capacitances is added to the current that flows in the DUT, and the sum of these currents is measured. Especially if you want to perform judgments with high sensitivity and accuracy, it is necessary to consider methods to limit the current that flows in these stray capacitances, such as by adding upper and lower limits.

Output voltage	1 kV	2 kV	3 kV	4 kV	5 kV
When using 350 mm long test leads that are suspended in air (TYP)	2 μΑ	4 μΑ	6 μΑ	8 μΑ	10 µA
When using the accessory, high test lead TL31-TOS (TYP)	16 µA	32 µA	48 μΑ	64 μΑ	80 µA

Hipot Tester/Hipot Tester with Insulation Resistance Test

Insulation Resistance Tester

	Output voltag	1A			2	5 V 50 V 100 V	TOS530		VDC (neg	ative)									
Output	Output voltag	Accuracy	25 V, 50 V, 100 V, 125 V, 250 V, 500 V, 1000 VDC (negative) -0 %, +5 %																
	Max. rated lo		1 W (-1000 V DC / 1 mA)																
	Max. rated cu		1 mA																
Output section		1000 V when no																	
	Ripple	load is connected	2 Vp-p or less																
		Max. rated load		10 Vp-p or less															
	Voltage regul	ation			1 %	or less (when	changing from ma	iximum rate	ed load to	no load)									
	Short-circuit	current					12 mA or	less											
	Discharge fea	iture		Forced discharge after test completion (discharge resistance: approx. 25 k Ω)															
	Limit voltage					0 11				V, 500 V, 1000 V									
	Output voltag	e monitor feature	If output volta	ge exceeds "1	0 % of set + 10	V" or is lower	· · · · · · · · · · · · · · · · · · ·		output is t	urned off, and protecti	ive feature	es are activated							
		Scale		6 kV AC/DC f.s + 5 % f.s															
	Analog	Accuracy		± 5 % f.s															
		Indication		Average value response/rms scale															
		Measurement range					0 V to -120	0 V											
neter				Measured	voltage	V < 1	00 V	100 V <	V < 1000 V	V 1000 V	V < V								
	Digital	Display				V < 1			V < 1000			_							
				Disp	lay		v	UL	JLI V		ILI V								
		Accuracy					$\pm (1\% \text{ of readin})$	ng + 1 V)											
						$0.03 \text{ M}\Omega \leq I$	$R \le 25 M\Omega / \pm (2 \%)$	<u> </u>	g + 2 digits	5)									
		25 V				25 Mg	$\Omega < R \le 125 \text{ M}\Omega$	±5 % of re	ading	·									
							$\Omega < R \le 250 \text{ M}\Omega$ /		~										
		50 V					$R \leq 50 M\Omega / \pm (2 \%)$		0	5)									
		50 V		$50 \text{ M}\Omega < \text{R} \le 250 \text{ M}\Omega / \pm 5\%$ of reading 250 MQ $< \text{R} \le 500 \text{ M}\Omega / \pm 10\%$ of reading															
				$\frac{250 \text{ M}\Omega < \text{R} \le 500 \text{ M}\Omega / \pm 10 \text{ \% of reading}}{0.100 \text{ M}\Omega \le \text{R} \le 100 \text{ M}\Omega / \pm 2 \text{ \% of reading}}$															
		100 V	$100 \text{ M}\Omega \le R \le 100 \text{ M}\Omega / \pm 2\%$ of reading $100 \text{ M}\Omega < R \le 500 \text{ M}\Omega / \pm 5\%$ of reading																
	Measurement		$500 \text{ M}\Omega < \text{R} \le 10 \Omega / \pm 10 \%$ of reading																
	range / measurement accuracy *4 *5		$0.125 \text{ M}\Omega \le R \le 125 \text{ M}\Omega / \pm 2\%$ of reading																
		125 V	125 M Ω < R \leq 625 M Ω / \pm 5 % of reading																
			$625 \text{ M}\Omega < R \le 1.25 \text{ G}\Omega / \pm 10 \% \text{ of reading}$																
neter		250 V	$0.250 \text{ M}\Omega \le R \le 250 \text{ M}\Omega / \pm 2\%$ of reading 250 M $\Omega < R \le 1.25 \text{ G}\Omega / \pm 5\%$ of reading																
		250 V	$250 \text{ M}\Omega < \text{R} \le 1.25 \text{ G}\Omega / \pm 3\%$ of reading 1.25 G $\Omega < \text{R} \le 2.5 \text{ G}\Omega / \pm 10\%$ of reading																
			$0.50 \text{ M}\Omega \le R \le 500 \text{ M}\Omega / \pm 2\% \text{ of reading}$																
		500 V	$500 \text{ M}\Omega < R \le 2.5 \text{ G}\Omega / \pm 5\%$ of reading																
			$2.5 \text{ G}\Omega < R \le 5 \text{ G}\Omega / \pm 10 \%$ of reading																
		1000 V		$1 \text{ M}\Omega \leq R < 1 \text{ G}\Omega / \pm 2\%$ of reading $1 \text{ G}\Omega < R \leq 5 \text{ G}\Omega / \pm 5\%$ of reading															
			$1 \text{ G}\Omega \leq R \leq 5 \text{ G}\Omega / \pm 5 \%$ of reading																
			$25 \text{ k}\Omega \leq \text{R} \leq$	< 1.00 MΩ	1.00 MΩ ≤ I	R < 10.0 MΩ	$10.0 \text{ M}\Omega \leq \text{R} <$	100 MΩ	100.0 M	$\Omega \le R < 1.00 \text{ G}\Omega$	1.00 GΩ	$\leq R \leq 9.99 \text{ GC}$							
	Display *5				0.0	Ω ΜΩ	 N			000 ΜΩ		$\Box\Box$ $G\Omega$							
												-							
Iold feat	ure			Afi	er a test is finis	shed, the measu	red resistance is 1	etained unt	il the PAS	8 judgment is cleared.									
Current d	etection respon	se speed				Can be switch	ned between three	levels: Fas	t, Mid, Slo	0W									
						. .				D : 1									
			Judgment			Judgment 1				Display	Buzzer	SIGNAL I/							
										FAIL LED lights;	ON	Generates a U-FAIL							
			UPPER FAIL			ise time (Rise T		This Judgm	ent is not	OVER is displayed on the screen	ON	signal							
				1			,	it is detect	ed or if a	FAIL LED lights;		Generates							
			LOWER FAIL							UNDER is displayed	ON	a L-FAIL							
		hod and judgment			ER FAIL judgm				,	on the screen		signal							
	operation			If the specifi	ad tima alanca	a without only n	roblems, the outp	ut is turned	off			Company							
			PASS	-	judgment occu	P 1	toblems, the outp	ut is turned	011,	PASS LED lights	ON	Generates a PASS sign							
					,														
				If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a STOP signal.															
											 The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP signal. The FAIL and PASS buzzer volume levels can be changed. 								
			• The UPPER FA	IL and LOWI	ER FAIL signa	ls are generated					nal.								
			The UPPER FA The FAIL and P	IL and LOWI ASS buzzer v	ER FAIL signal olume levels c	ls are generated an be changed.	continuously unt	il the TOS5	300 Series	s receives a STOP sign		ff after 0.2 seco							
	Upper limit s	etting range	The UPPER FA The FAIL and P For PASS judgm	IL and LOWI ASS buzzer v ents, the length	ER FAIL signal olume levels c	ls are generated an be changed.	continuously unt	il the TOS5	300 Series			ff after 0.2 seco							
	Upper limit s		 The UPPER FA The FAIL and P For PASS judgme 0.03 MΩ to 5.00 	IL and LOWI ASS buzzer wents, the length $G\Omega$	ER FAIL signal olume levels c	ls are generated an be changed.	continuously unt	il the TOS5	300 Series	s receives a STOP sign		ff after 0.2 seco							
udgment eature	Upper limit s Lower limit s		The UPPER FA The FAIL and P For PASS judgm 0.03 MΩ to 5.00 0.03 MΩ to 5.00	IL and LOWI ASS buzzer v ents, the length $G\Omega$ $G\Omega$	ER FAIL signal olume levels c of time that the	ls are generated an be changed.	continuously unt	il the TOS5	300 Series	s receives a STOP sign		ff after 0.2 seco							
	Lower limit s	etting range	The UPPER FA The FAIL and P For PASS judgm 0.03 MΩ to 5.00 0.03 MΩ to 5.00 Measurement acc	IL and LOWI ASS buzzer v ents, the length $G\Omega$ $C\Omega$ curacy + 2 dig	ER FAIL signal olume levels c of time that the its	ls are generated an be changed. buzzer sounds f	l continuously unt	il the TOS5 conds. Even	300 Series	s receives a STOP sign		ff after 0.2 seco							
		etting range	The UPPER FA The FAIL and P For PASS judgm 0.03 MΩ to 5.00 0.03 MΩ to 5.00	IL and LOWI PASS buzzer v ents, the length $G\Omega$ curacy + 2 dig h to 70 %rh (r	ER FAIL signal olume levels c of time that the its	ls are generated an be changed. buzzer sounds f	t continuously unt for is fixed to 0.2 se	il the TOS5 conds. Even bbly test le	300 Series	s receives a STOP sign		ff after 0.2 seco							
	Lower limit s	etting range	 The UPPER FA The FAIL and P For PASS judgm 0.03 MΩ to 5.00 0.03 MΩ to 5.00 Measurement acc Humidity: 20 %rl 	IL and LOWI PASS buzzer v ents, the length $G\Omega$ curacy + 2 dig h to 70 %rh (r 200 nA or les	ER FAIL signal olume levels c of time that the its to condensation is, a test time o	ls are generated an be changed. buzzer sounds f n). No interfere of at least 1.0 se	l continuously unt or is fixed to 0.2 se nce caused by we conds is necessar	il the TOS5 conds. Even bbly test le	300 Series	s receives a STOP sign		ff after 0.2 seco							
	Lower limit s Judgment acc (the same for	etting range	 The UPPER FA The FAIL and P For PASS judgmu 0.03 MΩ to 5.00 0.03 MΩ to 5.00 Measurement acc Humidity: 20 %rl For judgments of If the current detter 	IL and LOWI ASS buzzer v ents, the length $G\Omega$ $G\Omega$ uracy + 2 digh to 70 %rh (r200 nA or lessection respons	ER FAIL signal olume levels c of time that the its to condensation s, a test time o te speed is set t	Is are generated an be changed. buzzer sounds fr n). No interfere of at least 1.0 se to Mid, a test tin	l continuously unt or is fixed to 0.2 se nce caused by we conds is necessar	il the TOS5 conds. Even bbly test le y. seconds is r	300 Series if PASS HO ads or othe necessary.	s receives a STOP sign		ff after 0.2 seco							
	Lower limit s Judgment acc (the same for	uracy UPPER and	 The UPPER FA The FAIL and P For PASS judgmu 0.03 MΩ to 5.00 0.03 MΩ to 5.00 Measurement acc Humidity: 20 %rl For judgments of If the current detter 	IL and LOWI ASS buzzer v ents, the length $G\Omega$ $G\Omega$ uracy + 2 digh to 70 %rh (r200 nA or lessection respons	ER FAIL signal olume levels c of time that the its to condensation s, a test time o te speed is set t	Is are generated an be changed. buzzer sounds fr n). No interfere of at least 1.0 se to Mid, a test tin	nce caused by we conds is necessar ne of at least 0.3	il the TOS5 conds. Even bbly test le y. seconds is r	300 Series if PASS HO ads or othe necessary.	s receives a STOP sign		ff after 0.2 seco							
eature	Lower limit s Judgment acc (the same for LOWER)	etting range uracy UPPER and ime	• The UPPER FA • The FAIL and P • For PASS judgm 0.03 M\Omega to 5.00 0.03 M\Omega to 5.00 Measurement acc Humidity: 20 %r For judgments of If the current dett If the current dett 10 ms (TYP) 0.1 s to 999 s, ca	IL and LOWI ASS buzzer v ents, the length $G\Omega$ $C\Omega$ Curacy + 2 digh to 70 %rh (r200 nA or lessection responseection responseentities of the section of the sectionresponseof the section responseentities of the section of the sectionresponseof the section responseentities of the section of the sectionresponse of the section of the section of the sectionresponse of the section of the section of the sectionresponse of the section of the sec	ER FAIL signal olume levels c of time that the its its to condensation is, a test time o e speed is set t e speed is set t ff (TIMER OF	Is are generated an be changed. buzzer sounds f n). No interfere of at least 1.0 se to Mid, a test ti to Slow, a test ti	nce caused by we conds is necessar ne of at least 0.3	il the TOS5 conds. Even bbly test le y. seconds is r	300 Series if PASS HO ads or othe necessary.	s receives a STOP sign		ff after 0.2 seco							
	Lower limit s Judgment acc (the same for LOWER) Voltage rise t	uracy UPPER and	• The UPPER FA • The FAIL and P • For PASS judgm 0.03 M Ω to 5.00 0.03 M Ω to 5.00 Measurement acc Humidity: 20 %rf For judgments of If the current dett If the current dett 10 ms (TYP)	IL and LOWI ASS buzzer v ents, the length 0 GΩ 0 GΩ 0 uracy + 2 dig h to 70 %rh (r 200 nA or lesection response ection response m be turned o .1 s. 100 s to 5	ER FAIL signal olume levels c of time that the its its to condensation is, a test time o e speed is set t e speed is set t ff (TIMER OF	Is are generated an be changed. buzzer sounds f n). No interfere of at least 1.0 se to Mid, a test ti to Slow, a test ti	nce caused by we conds is necessar ne of at least 0.3	il the TOS5 conds. Even bbly test le y. seconds is r	300 Series if PASS HO ads or othe necessary.	s receives a STOP sign		ff after 0.2 secc							

Hipot Tester/Hipot Tester with Insulation Resistance Test

Other Features / Interfaces

		TOS5300	TOS5301	TOS5302				
Double action feature		Tests can only be started by pressing and releasing STOP and then pressing START within 0.5 seconds of releasing the STOP switch.						
Length of time to maintain a PASS judgment result		You can set the length of time to maintain a PASS judgment: 50 ms, 100 ms, 200 ms, 1 s, 2 s,5 s, or HOLD.						
Momentary feature		Tests are only executed while the START switch is held down.						
Fail mode feature		This feature enables you to prevent remotely transmitted stop signals from clearing FAIL judgments and PROTECTION modes.						
Timer feature		This feature finishes tests when the specified time elapses.						
Output voltage monitor feature		If output voltage exceeds "setting + 350 V" or is lower than "setting - 350 V," the TOS5300 Series switches to PROTECTION mode, output is turned off, and testing finishes.						
Memory		Up to	three sets of test conditions can be saved to m	emory.				
Key lock		L	ocks panel key operations (settings and change	es).				
Protective features		Under any of the following conditions, the TOS5300 Series	switches to the PROTECTION state, immediately turns output	tt off, and stops testing. A message is displayed on the screen.				
Interlock Protection			An interlock signal has been detected.					
Power Supply Protection			An error was detected in the power supply.					
Volt Error Protection		While monitoring the output voltage, a voltage outside of the rated limits was detected.						
voit Entit i lottetion		AC or DC hipot tests: ± 350 V Insulation resistance test: $\pm (10\% \text{ of set} + 10 \text{ V})$						
Over Load Protection		During a withstanding voltage test, a value that is greater than or equal to the output limit power was specified. AC hipot test: 550 VA. DC hipot test: 55 VA.						
Over Heat Protection	Over Heat Protection		The internal temperature of the TOS5300 Series became too high.					
Over Rating Protection		During a withstanding voltage test, the output current was generated for a length of time that exceeds the regulated time.						
Calibration Protection		The specified calibration period has elapsed.						
Remote Protection		A connection to or disconnection from the front-panel REMOTE connector was detected.						
SIGNAL I/O Protection		The rear-panel SIGNAL I/O connector's ENABLE signal has changed.						
USB Protection		The USB connector has been disconnected while the TOS5300 Series was being controlled through the USB interface.						
System clock		Set in the following format: year/month/day hour/minutes/seconds.						
Calibration date		Set when the TOS5300 Series is calibrated.						
Calibration period setting		Sets the period before the next calibration is necessary.						
Notification of when the calibra period elapses	tion	Sets the operation that is performed when the specified calibration period elapses. When the TOS5300 Series turns on, it can display a notification or switch to the protection mode and disable testing.						
USB		USB Specification 2.0						
Interfaces REMOTE		Front-panel 9-pin MINI DIN connector. By connecting an optional device to this connector, you can control the starting and stopping of tests remotely.						
SIGNAL I/O		Rear-panel D-sub 25-pin connector						

General Specifications

				TOS5300	TOS5301	TOS5302			
Display			VFD: 256×64 dots + 4 status indicators						
Backup battery life			3 years (at 25 °C or 77 °F)						
Installation location		on	Indoors, at a height of up to 2000 m						
	Spec guaranteed		Temperature		5 °C to 35 °C (41 °F to 95 °F)				
Environ-	range	I	Humidity						
Environ- ment	Operating ra	1	Temperature		0 °C to 40 °C (32 °F to 104 °F)				
ment	Operating ra	Inge I	Humidity	20 %rh to 80 %rh (no condensation)					
	Storago rong	. 1	Temperature		-20 °C to 70 °C (-4 °F to 158 °F)				
	Storage range		Humidity		90 %rh or less (no condensation)				
	Nominal voltag	ge rang	ge (allowable voltage range)	100 VAC to 240 VAC (90 VAC to 250 VAC)					
Power	Power	When n	to load is connected (READY)	100 VA or less					
supply	consumptio V	When rated load isconnected		800 VA max.					
	Allowable fr	equer	ncy range	47 Hz to 63 Hz					
Insulation	resistance (betw	een A	C LINE and the chassis)	30 MΩ or more (500 VDC)					
Withstandi	Withstanding voltage (between AC LINE and the chassis)		AC LINE and the chassis)	1400 Vac, 2 seconds (Routine test) / 1500 Vac, 1 minutes (Type test)					
Earth con	Earth continuity *1			25 AAC, 0.1 Ω or less					
Safety (Do	Safety (Does not apply to specially ordered or modified TOS5300 Series testers.)		or modified TOS5300 Series testers.)	Complies with the requirements of the following directive and standard. Low Voltage Directive 2006/95/EC, EN 61010-1 Class I *4, Pollution degree 2					
Electromagnetic compatibility (EMC) *1 (Does not apply to specially ordered or modified TOS5300 Series testers.) (Limited to products that have the CE mark on their panels.)		dified TOS5300 Series testers.)	Complies with the requirements of the following directive and standard. EMC Directive 2004/108/EC, EN 61326-1(Class A*2), EN 55011(Class A*2, Group1*3) EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to the TOS5300 must be less than 2.5 m. The shielded cable is being used when using the SIGNAL I/O. The high test lead TL31-TOS						
Dimensions			320[12.60 inch] (330[12.99 inch]) W × 132[5.20 inch] (150[5.19 inch]) H × 350[13.78 inch] (420[16.54 inch]) D mm						
Weight				Approx. 14 kg (Approx. 30.9 lbs.) Approx. 15 kg (Approx. 33.1 lbs.) Approx. 14 kg (Approx. 30.9 lbs.)					
Accessories				Power cord : 1pc. / High test lead (TL31-TOS) : 1set (1 red wire and 1 black wire, each with alligator clips); 1.5 m / D-sub 25-pin plug : 1set ; assembly type / High-voltage warning sticker : 1pc. / User's manual : 1pc. / CD-R : 1pc.*5					

*1: Only on models that have the CE marking on the panel. Although signals are insulated with output terminals, each signal is common. Logic setting is also possible. *2: This is a Class A equipment. This product is intended for use in an industrial environment.

This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

*3: This is a Group 1 equipment. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of *4: This is a Class I equipment. Be sure to ground this product's protective conductor terminal. The safety of this product is only guaranteed when the product is properly grounded.
 *5: Contains the User's Manual, the Cimmunication Interface Manual, VISA library (KI-VISA), IVI-COM driver, and Safety evaluation test.

TOS5200 SERIES AC Hipot Tester

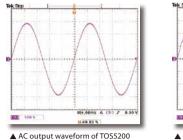
An ideal AC Hipot Tester with low cost of ownership, built on more than 50 years of experience in market

TOS5200(ACW)

The low cost of "New standard AC Hipot tester" with high-usability, reliability, and safety aspect.

TOS5200 is designed for AC Hipot Test with 500 VA capacity and 200 mA short circuit current output capability. Equipped with the PWM amplifier, the TOS5200 can provide a stable & reliable output without being affected by AC power line. Thus, it is a perfect solution for electronic equipment or devices complied to IEC, EN, UL, VDE and JIS etc. requirement. The TOS5200 covers most of features of which our upper class model of the AC Hipot Test, it achieves the superb cost / performance ratio for those who need 200 VA or 500 VA capacity, or both. Also, it equips the Interlock function together with other safety features, the operator can carry out the test with higher current value in safe.

- Highly-stable output is realized with the PWM switching amplifier system
- 5 kV / 100 mA (500 VA) AC Hipot test
- High-precision measurement of "±1.5 % of reading" (with the Voltmeter 500 V or higher, the Ammeter 1 mA or higher)
- Rise time / Fall time control function
- Supporting the World-wide input voltage
- Reducing the tact time
- The Keylock function & the Protection cover for the front panel operation
- Equipped with USB / RS232C interface

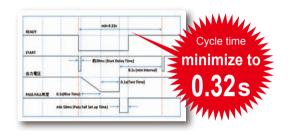

AC Hipot Tester

Basic performance

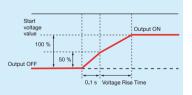
Highly stable output is realized with PWM Switching Amplifier!

Equipped with the PWM switching amplifier system, the TOS5200 realizes highly stable output not affected by input form AC line.A conventional Hipot Tester boosts and outputs the AC line's input voltage using a slide transformer system and which, the input voltage fluctuations will affect the output, preventing test from being performed properly. Since the TOS5200 equips with a high-efficient PWM amplifier that can output a stable high-voltage without being affected by the variation of AC power line, users can perform "safe", "stable", and highly "reliable" tests with confidence, even in regions with large voltage variations.

The output waveform is essential factor in Hipot (Withstanding oltage) testing!



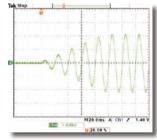
transformer system


Capable of Test Time setting from 0.1s, which enables to reduce the tact time !

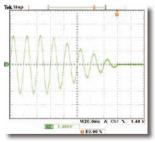
The TOS5200 can set the test time from 0.1 sec without sacrificing measurement accuracy. This makes test time 5 times faster compared to the TOS5050A (max test time:0.5sec) and it leads to reduce the tact time. Reduction of the tact time leads to improve the productivity, so it has been an issue that reducing the tact time may cause to worsen the measurement accuracy when the test time is faster than measurement respond speed.

Rise time / Fall time control function

The rise time control function is to prevent the excessive stress that is being applied to the EUT (test object). The Hipot (Withstanding voltage) test is conducted to verify the safety performance of the EUT and which test voltage for Hipot (Withstanding voltage) test is applied approximately five to ten times greater than the voltage that handles by the EUT. If a high voltage is applied rapidly with no rise time, the transitional large voltage (current) will be occurred, and it may cause a damage to the EUT. For this reason, safety standards stipulate the procedure of Hipot (Withstanding voltage) test, and the test voltage must be gradually increased to the specified voltage when the test is performed. The rise time control function adopted in the TOS5200 can set the voltage rise time from 0.1s to 10.0s (at a resolution of 0.1s) and also it is capable to set the 50% (fixed) of the applied test voltage. In addition, the fall time control function enables to decrease the test voltage gradually after the completion of a PASS judgement. The voltage fall time is fixed at 0.1s (OFF is also selectable).



▲ Start voltage can be set at 50 % of the test voltage


High Precision, High Resolution, Realizing high-speed judgment

High-precision measurement $\pm 1.5\%$ of reading (with voltmeter 500 V or higher, Ammeter 1 mA or higher) The auto-range function achieves the equivalent specifications of the judgment accuracy for the upper and lower fail, and it makes effective to detect the contact failure or the disconnected status of the test lead. Moreover, the test time as fast as 0.1s realize the high-speed judgment. It assures to perform testing with the high-precision, high-resolution, high-speed-measurement, and the judgment function.

Rise Time control function

A Rise time control waveform (example)

The Rise time control function enables you to increases the test voltage gradually to reach the setting voltage while the AC Hipot (Withstanding voltage) test is conducted. The voltage rise time can be set from 0.1s to 10.0s at a resolution of 0.1s.

The Fall time control function enables you to decrease the test voltage gradually when the PASS judgment is made at the AC Hipot (Withstanding voltage) test. The voltage fall time is fixed at 0.1s. (OFF is also selectable).

Fall time control waveform (example)

Improved the setting resolution of the leak current by 0.01 mA!

TOS5200 can set the current limit from0.01 mA to 110 mA. (TOS5050A: 0.1 mA to 110 mA)

- Enables to clarify the actual value of device under test (DUT)
- The setting resolution of the lower limit setting has been improved from the previous model, it enables to defect the failure more accurately.

AC Hipot Tester

Unless specified otherwise, the specifications are for the following settings and conditions. . The warm-up time is 30 minutes.

• TYP: These are typical values. These values do not guarantee the performance of the product. • rdng: Indicates the readout value. • set: Indicates a setting. • f.s: Indicates full scale.

Withstanding voltage tester

	Output range		0.05 kV to	5.00 kV						
		Accuracy			when no load is connected					
		Operating range	0.00 kV to 5.50 kV							
		Resolution	10 V steps							
	Max. rated outp	1	500 VA (5 kV/100 mA)							
	Max. rated volt		5 kV		/					
	Max. rated curr			hen the out	put voltage is 0.5 kV or greate	er)				
	Transformer rat			ine out	sat totage is 0.5 k v or greate	~,				
AC Output	Output voltage waveform *2		Sine	500 VA						
section	Output voltage	Distortion								
	Creat factor	Crest factor		If the output voltage is 0.5 kV or more: 3 % or less (when no load or a pure resistive load is connected) $\sqrt{2 \pm 3}$ % less than (when the output voltage is 800 V or greater, no load)						
		Frequency			ten the output voltage is 800	v of greater, no toad)				
	Frequency	A	50 Hz or 60 Hz + 0.5 % (avaluting during values rise time)							
	37.10 1.0	Accuracy	± 0.5 % (excluding during voltage rise time) 10 % or less (when changing from maximum rated load to no load)							
	Voltage regulati						10			
	Input voltage va		· · ·		o load is connected; power sup		V)			
	Short-circuit cu				n the output voltage is 1.0 kV	or greater)				
	Output method		PWM swite	-						
Start voltage					t of withstanding voltage tests		test voltage.			
Limit voltage				÷ 11	limit can be set . AC: 0.00 k					
Output voltage mon	itor feature		output is tu	rned off, an	eds the specified value + 350 V ad protective features are activ		ified value - 350 V,			
		Measurement range	0.000 kV to) 6.500 kV	AC					
		Display	0 · 000 kV	/						
Voltmeter	Digital	Accuracy	V < 500 V:	± (1.5 % of	f reading + 20 V), $V \ge 500 V$:	±1.5 % of reading				
		Response *3	True rms, A	verage valu	ue response/rms display switc	hable				
		Hold feature	After a test	is finished,	the measured voltage is retain	ned until the PASS or FAI	L judgment is cleared.			
		Measurement range	0.00 mA to	110 mA						
			i = measure	ed current	i < 1 mA	$1 \text{ mA} \le i \le 10 \text{ mA}$	$10 \text{ mA} \le i \le 100 \text{ mA}$	10	00 mA≤i	
		Display			0.000 mA	0.000 mA			00 mA ≤ 1	
Ammeter	Digital					I		UL		
		Accuracy *4			of reading), $i < 1.00 \text{ mA}$: $\pm (1)$					
		Response *3			ue response/rms display switch					
		Hold feature	After a test	is finished,	the measured current value is	s retained until the PASS ju	udgment is cleared.			
			Judgment		Judgment method	d	Display	Buzzer	SIGNAL I/O	
			UPPER		that is greater than or equal to		FAIL LED lights; UPPER	ON	Generates	
				l the output i	s turned off, and an UPPER FAI	L judgment occurs.	is displayed on the screen		a U-FAIL signal	
			FAIL		,				-	
				If a current	t that is less than or equal to the		FAIL LED lighter			
			LOWER	If a current the output	t that is less than or equal to the is turned off, and a LOWER FA	AIL judgment occurs. This	FAIL LED lights; LOWER is displayed on	ON	Generates	
	Tudon and an 4	ad and		If a current the output judgment is tests and du	t that is less than or equal to the is turned off, and a LOWER FA s not performed during voltage turing the voltage fall time (Fall	AIL judgment occurs. This rise time (Rise Time) of all		ON	Generates a U-FAIL signal	
	Judgment meth		LOWER	If a current the output judgment is tests and du voltage test	t that is less than or equal to the is turned off, and a LOWER FA s not performed during voltage r uring the voltage fall time (Fall is.	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding	LOWER is displayed on the screen	ON	a U-FAIL signal	
	Judgment meth judgment opera		LOWER	If a current the output judgment is tests and du voltage test If the specifi	t that is less than or equal to the is turned off, and a LOWER FA s not performed during voltage to uring the voltage fall time (Fall s. fied time elapses without any pro-	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding	LOWER is displayed on the screen PASS LED lights;	ON	a U-FAIL signal Generates	
Ludowant facture			LOWER FAIL PASS	If a current the output judgment is tests and du voltage test If the specifion off, and a P	t that is less than or equal to the is turned off, and a LOWER FA s not performed during voltage to uring the voltage fall time (Fall s. fied time elapses without any pro ASS judgment occurs.	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned	LOWER is displayed on the screen PASS LED lights; displayed on the screen	ON	a U-FAIL signal Generates a PASS signal	
Judgment feature			LOWER FAIL PASS • If PASS F	If a current the output judgment is tests and du voltage test If the specie off, and a P HOLD is ena	t that is less than or equal to th is turned off, and a LOWER F, s not performed during voltage uring the voltage fall time (Fall s. fied time elapses without any pro ASS judgment occurs. abled, the PASS signal is gene	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
Judgment feature			LOWER FAIL PASS • If PASS F • The UPPF	If a current the output judgment is tests and du voltage test off, and a P HOLD is ena ER FAIL an	t that is less than or equal to the is turned off, and a LOWER F, s not performed during voltage i uring the voltage fall time (Fall is, fied time elapses without any pro ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until th generated continuously until	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
Judgment feature			LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS	If a current the output judgment is tests and du voltage test If the specifion off, and a P HOLD is ena ER FAIL an and PASS	t that is less than or equal to th is turned off, and a LOWER F, s not performed during voltage uring the voltage fall time (Fall s. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
Judgment feature			LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS	If a current the output judgment is tests and du voltage test If the specifion off, and a P HOLD is ena ER FAIL an and PASS	t that is less than or equal to the is turned off, and a LOWER F, is not performed during voltage i uring the voltage fall time (Fall is. fied time elapses without any pro ASS judgment occurs. abled, the PASS signal is genue d LOWER FAIL signals are g buzzer volume levels can be c	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
Judgment feature		ation	LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS	If a current the output judgment is tests and du voltage test If the specir off, and a P HOLD is ena ER FAIL an and PASS judgments, ASS HOLD	t that is less than or equal to th is turned off, and a LOWER F, s not performed during voltage uring the voltage fall time (Fall s. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	judgment opera	ting	LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS Even if P/	If a current the output judgment is tests and du voltage test If the specir off, and a P HOLD is ena ER FAIL an and PASS judgments, ASS HOLD	t that is less than or equal to the is turned off, and a LOWER F, s not performed during voltage uring the voltage fall time (Fall is. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu is enabled, the buzzer turns of	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	judgment opera	tingting	LOWER FAIL PASS • If PASS F • The UPPI • The FAIL • For PASS Even if P/ 0.01 mA to 0.01 mA to	If a current the output judgment is tests and duvoltage test if the special off, and a P HOLD is emailer FAIL an and PASS i judgments; ASS HOLD 110 mA 110 mA / 010 m	t that is less than or equal to the is turned off, and a LOWER F, s not performed during voltage uring the voltage fall time (Fall is. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu is enabled, the buzzer turns of	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to off after 0.2 seconds.	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series receiv	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	judgment opera Upper limit sett Lower limit set	ting ting racy *4	LOWER FAIL PASS • If PASS F • The UPPI • The FAIL • For PASS Even if $P/2$ 0.01 mA to 0.01 mA to 1.00 mA \leq	If a current the output judgment is tests and di voltage test If the speci- off, and a P 40LD is ener RFAIL an and PASS judgments, ASS HOLD 110 mA 110 mA/C i: ± (1.5 %)	t that is less than or equal to the is turned off, and a LOWER F, not performed during voltage t uring the voltage fall time (Fall is. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu compared to the buzzer turns of DFF of set), i < 1.00 mA: ± (1.5 %	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until tl generated continuously until changed. uzzer sounds for is fixed to off after 0.2 seconds.	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	judgment opera Upper limit sett Lower limit set Judgment accur Current detectio	ting ting racy *4	LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS Even if P 0.01 mA to 0.01 mA to 1.00 mA \leq Calculates	If a current the output judgment is tests and du voltage test If the specie off, and a P 4OLD is ence ER FAIL an and PASS judgments, XSS HOLD 110 mA 110 mA/C i: ± (1.5 %)	t that is less than or equal to the sturned off, and a LOWER F, so not performed during voltage f and the voltage fall time (Fall is. fied time elapses without any processing the state of the the ASS signal is generated by the the ASS signal is generated by the the the ASS signal is generated by the the the the solution of time that the busic is enabled, the buzzer turns of the true to the	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until th generated continuously until thanged. uzzer sounds for is fixed to off after 0.2 seconds. o of set + 30 μ A) s this value with the refere	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
udgment feature	Upper limit sett Lower limit sett Judgment accur Current detectio Calibration	ting ting racy *4 on method	LOWER FAIL PASS • If PASS F • The UPPI • The FAIL • For PASS Even if P_{2}^{\prime} 0.01 mA to 0.01 mA to 1.00 mA \leq Calculates Calibrated	If a current the output judgment is tests and du voltage test off, and a P dOLD is ence ER FAIL an and PASS judgments, ASS HOLD 110 mA 110 mA/C i: ± (1.5 %) the current? with the rm	t that is less than or equal to the is turned off, and a LOWER F, not performed during voltage t uring the voltage fall time (Fall is. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the length of time that the bu compared to the buzzer turns of DFF of set), i < 1.00 mA: ± (1.5 %	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until th generated continuously until thanged. uzzer sounds for is fixed to off after 0.2 seconds. o of set + 30 μ A) s this value with the refere	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	judgment opera Upper limit sett Lower limit set Judgment accur Current detectio	ting ting racy *4 on method	LOWER FAIL PASS • If PASS F • The UPPI • The FAIL • For PASS Even if $P/$ 0.01 mA to 0.01 mA to 1.00 mA \leq Calculates Calculates 0.1 s to 10.0	If a current the output judgment is tests and du voltage test off, and a P dOLD is ence ER FAIL an and PASS judgments, ASS HOLD 110 mA 110 mA/C i: ± (1.5 %) the current? with the rm	t that is less than or equal to the sturned off, and a LOWER F, so not performed during voltage f and the voltage fall time (Fall is. fied time elapses without any processing the state of the the ASS signal is generated by the the ASS signal is generated by the the the ASS signal is generated by the the the the solution of time that the busic is enabled, the buzzer turns of the true to the	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until th generated continuously until thanged. uzzer sounds for is fixed to off after 0.2 seconds. o of set + 30 μ A) s this value with the refere	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
ludgment feature	Upper limit sett Lower limit sett Judgment accur Current detectio Calibration Voltage rise tim	ting ting racy *4 on method ne Resolution	LOWER FAIL PASS • If PASS F • The UPPI • The FAIL • For PASS Even if PA 0.01 mA to 0.01 mA to 1.00 mA \le Calculates Calculates Calculates 0.1 s to 10.0 0.1 s	If a current the output judgment is tests and du voltage test If the speci- off, and a P HOLD is en: ER FAIL an and PASS I judgments. ASS HOLD 110 mA 110 mA/C i: ± (1.5 %) the current? with the rm 0 s	t that is less than or equal to the sturred off, and a LOWER F, so to performed during voltage suring the voltage fall time (Fall s. field time elapses without any protect ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the enabled, the buzzer turns of the length of time that the buist enabled, the buzzer turns of DFF of set), i < 1.00 mA: \pm (1.5% s true rms value and compare: s of a sine wave using a pure sine the set of the s	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to off after 0.2 seconds.	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
	Upper limit sett Lower limit sett Judgment accuu Current detectio Calibration Voltage rise tim	ting ting racy *4 on method ne Resolution	$\begin{tabular}{ c c c c } LOWER FAIL \\ \hline PASS \\ \hline If PASS F \\ \hline The VPIL \\ \hline The FAIL \\ For PASS \\ Even if PA \\ \hline 0.01 mA to \\ 0.01 mA to \\ \hline 0.01 mA to \\ \hline 1.00 mA \leq \\ \hline Calculates \\ \hline Calculates \\ \hline Calibrated \\ \hline 0.1 s to 10. \\ \hline 0.1 s \\ \hline 0.1 s / OFF \\ \hline \end{tabular}$	If a current the output judgment is tests and du voltage test If the specie off, and a P HOLD is ense ER FAIL an and PASS judgments. ASS HOLD 110 mA 110 mA/C i: ± (1.5%) the current? with the rm 0 s	t that is less than or equal to the is turned off, and a LOWER F, so to performed during voltage uring the voltage fall time (Fall s. fied time elapses without any pre ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are ge buzzer volume levels can be con the length of time that the bu is enabled, the buzzer turns or DFF of set), i < 1.00 mA: ± (1.5 % s true rms value and compare: s of a sine wave using a pure to led when a PASS judgment or to the signal so the sine wave to so the sine to the size of the size o	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to off after 0.2 seconds.	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	
Judgment feature	Upper limit sett Lower limit sett Judgment accur Current detectio Calibration Voltage rise tim	ting ting racy *4 on method ne Resolution	LOWER FAIL PASS • If PASS F • The UPPF • The FAIL • For PASS Even if $P/2$ 0.01 mA to 0.01 mA to 1.00 mA \leq Calculates Calibrated 0.1 s to 10. 0.1 s 0.1 s / OFF 0.1 s to 995	If a current the output judgment is tests and di voltage test If the speci off, and a P HOLD is encoded ER FAIL an and PASS judgments. ASS HOLD 110 mA 110 mA/C i: ± (1.5%) the current', with the rm 0 s	t that is less than or equal to the sturred off, and a LOWER F, so to performed during voltage suring the voltage fall time (Fall s. field time elapses without any protect ASS judgment occurs. abled, the PASS signal is gene d LOWER FAIL signals are g buzzer volume levels can be c the enabled, the buzzer turns of the length of time that the buist enabled, the buzzer turns of DFF of set), i < 1.00 mA: \pm (1.5% s true rms value and compare: s of a sine wave using a pure sine the set of the s	AIL judgment occurs. This rise time (Rise Time) of all Time) of AC withstanding oblems, the output is turned erated continuously until the generated continuously until changed. uzzer sounds for is fixed to off after 0.2 seconds.	LOWER is displayed on the screen PASS LED lights; displayed on the screen he TOS5300 Series receiv il the TOS5300 Series rec 0.2 seconds.	ON ves a STC	a U-FAIL signal Generates a PASS signal DP signal.	

*1: Regarding the output time limits: Taking size, weight, and cost into consideration, the heat dissipation capability of the voltage generator that is used for withstanding voltage tests has been designed to be one half that of the rated output. Use the TOS5300 Series within the following limits. If you use the product in a manner that exceeds these limits, the output section may overheat, and the internal protection circuits may be activated. If this happens, stop testing, and wait until the TOS5300 Series returns to its normal temperature.

Ambient temperature		Pause time	Output time
$t \le 40 \text{ °C}$ 50 mA < i $\le 110 \text{ mA}$		Greater than or equal to the output time	30 min. max.
	$i \le 50 \text{ mA}$	Not necessary	Continuous output possible

*2: Regarding the test voltage waveform:

Waveform distortions may occur if an DUT whose capacitance is dependent on voltage (for example, an DUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted. *3: For both True rms and Mean-value response, 50 ms or above response time is required to satisfy the measurement accuracy.

(Output time = voltage rise time + test time + voltage fall time)

*4: Regarding ammeter and judgment accuracy:

During AC withstanding voltage tests, current also flows in the stray capacitance of items such as the measurement leads and jigs. This current that flows in the stray capacitances is added to the current that flows in the DUT, and the sum of these currents is measured. Especially if you want to perform judgments with high sensitivity and accuracy, it is necessary to consider methods to limit the current that flows in these stray capacitances, such as by adding upper and lower limits.

Output voltage	1 kV	2 kV	5 kV
When using 350 mm long test leads that are suspended in air (TYP)	2 μΑ	4 μΑ	10 µA
When using the accessory, high test lead TL31-TOS (TYP)	16 µA	32 µA	80 µA

In case of 70 % humidity or higher, it is considerable to add 50 µA on the Limit value.

TOS5200 SERIES

AC Hipot Tester

Other features / Interfaces

Test mode Tests can only be started by pressing and releasing STOP and then pressing START within 0.5 seconds of releasing Double action feature the STOP switch. You can set the length of time to maintain a PASS Length of time to maintain a PASS judgment: 50 ms, 100 ms, 200 ms, 1 s, 2 s,5 s, or judgment result HOLD. Tests are only executed while the START switch is Momentary feature held down This feature enables you to prevent remotely transmitted stop signals from clearing FAIL judgments Fail mode feature and PROTECTION modes. This feature finishes tests when the specified time Timer feature elapses. If output voltage exceeds "setting + 350 V" or is lower than "setting - 350 V," the TOS5200 switches to PROTECTION mode, Output voltage monitor feature output is turned off, and testing finishes. Up to three sets of test conditions can be saved to Memory memory. Key lock Locks panel key operations (settings and changes). Under any of the following conditions, the TOS5200 switches to the PROTECTION state, Protective features immediately turns output off, and stops testing. A message is displayed on the screen. An interlock signal has been detected. Interlock Protection Power Supply Protection An error was detected in the power supply While monitoring the output voltage, a voltage outside of the rated limits was detected. AC or DC withstanding voltage tests: ±350 V Volt Error Protection During a withstanding voltage test, a value that is greater than or equal to the output limit power was Over Load Protection specified. AC withstanding voltage test: 550 VA. The internal temperature of the TOS5200 became Over Heat Protection too high. During a withstanding voltage test, the output current Over Rating Protection was generated for a length of time that exceeds the regulated time. A connection to or disconnection from the front-Remote Protection panel REMOTE connector was detected. The rear-panel SIGNAL I/O connector's ENABLE SIGNAL I/O Protection signal has changed. The USB connector has been disconnected while the TOS5200 was being controlled through the USB USB Protection interface. USB USB Specification 2.0 D-SUB 9-pin connector on the rear panel (compliant with EIA-232-D) RS232C *1 All functions other than the POWER switch and KEY-LOCK Interfaces Front-panel 9-pin MINI DIN connector. By connecting an optional device to this connector, REMOTE you can control the starting and stopping of tests remotely Rear-panel D-sub 25-pin connector SIGNAL I/O

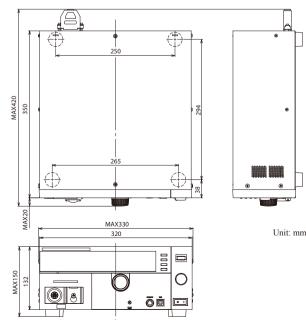
*1: "Talk mode" can be set, when RS232C is used as comunication interface.

Talk mode	Description		
0	It responds only for commands from PC. (Default setting)		
	It responds automatically for start and end test, and returns the status, setting value, measured value.		
	Response at start		<start></start>
1	Response at	Status	<pass>, <u_fail>, <l_fail>, <prot>, <about></about></prot></l_fail></u_fail></pass>
	end of test	Setting value, Measured value	Test No., Programme No., Test mode, Measured voltage, Measured current, Test time

General

Display			LCD: LED backlight	
	Installation location		Indoors, at a height of up to 2000 m	
Environ	Spec guaranteed range temperature/ humidity		5 °C to 35 °C (41 °F to 95 °F)/20 %rh to 80 %rh (no condensation)	
Environ- ment	Operating range temperature/ humidity		0 °C to 40 °C (32 °F to 104 °F)/20 %rh to 80 %rh (no condensation)	
	Storage range temperature/ humidity		-20 °C to 70 °C (-4 °F to 158 °F)/90 %rh or less (no condensation)	
	Nominal volta	ge range (allowable voltage range)	100 VAC to 240 VAC (90 VAC to 250 VAC)	
Power	Power	When no load is connected (READY)	100 VA or less	
supply	consumptio	When rated load isconnected	800 VA max.	
	Allowable	frequency range	47 Hz to 63 Hz	
Insulation	resistance (be	tween AC LINE and the chassis)	30 MΩ or more (500 VDC)	
Withstand	ing voltage (be	etween AC LINE and the chassis)	1500 VAC, one minute	
Earth con	ntinuity		25 AAC, 0.1 Ω or less	
Electromagnetic compatibility (EMC) *1		npatibility (EMC) *1	Complies with the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1(ClassA *2), EN 55011(ClassA *2, Group1 *3), EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to the TOS5200 must be less than 2.5 n The shielded cable is being used when using the SIGNAL I/O. The high test lead TL31-TOS	
Safety *1			Complies with the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I *4 Pollution degree 2)	
Dimensions (mm(inches))(maximum)			320 (12.6") (330(12.99")) W × 132(5.2") (150(5.91")) H × 350(13.78") (420(16.54")) D	
Weight			Approx. 14 kg (30.9 lbs)	
Accessories			Power cord : 1pc. / High test lead (TL31-TOS) : 1set (1 red wire and 1 black wire, each with alligat clips); 1.5 m / D-sub 25-pin plug : 1set ; assembl type / High-voltage warning sticker : 1pc. / Setup Guide / Quick Reference(1 each for Engli and Japanese) / Safety informaion / CD-R *5	

*1: Only on models that have the CE marking on the panel. Although signals are insulated with output terminals, each signal is common. Logic setting is also possible.


*2: This is a Class A equipment. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

*3: This is a Group 1 equipment. This product does not generate and/or use intentionally radiofrequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.

*4: This is a Class I equipment. Be sure to ground this product's protective conductor terminal

The safety of this product is only guaranteed when the product is properly grounded. *5: Contains the User's Manual, the Cimmunication Interface Manual, VISA library (KI-VISA), IVI-COM driver, and Safety evaluation test.

– External dimensional diagrams —

Basic model series with excellent cost performance

TOS5101(ACW/DCW)

High-end model of TOS series having AC, DC10kV output Conforming to demands of various component standards testing and margin test

TOS5101 is designed exclusively for withstand voltage testing of electronic equipment and components conforming to various safety standards. The use of a high luminance, large fluorescent display tube for the display enables data including measured values, status and judgment results to be extremely legible. The PASS/FAIL function employs a window comparator method that enables TOS5101 to make fail judgment of current leakage over the upper reference value and below the lower reference value which can be set on the front panel.

Thus, highly reliable testing can be performed including that for test lead disconnection and defective contact. In addition, in order to prevent erroneous operation and accidents, the TOS5101 is also equipped with a Key Lock function and Interlock function, a highvoltage output terminal having a narrowed insertion port, a large DANGER lamp, and an automatic discharge function (during DC operation) that removes charge from the test piece. These features give the TOS5101 a high degree of safety and reliability.

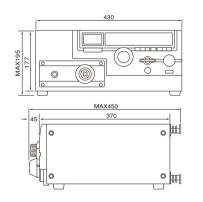
*In general, when the capacitance of DUT has a voltage dependence (such as a "High-dielectric constant ceramic capacitor"), please take a caution that the waveform distortion may occurs.

- Complies with various safety standards
- AC / DC output (0 to 10 kV)
- Large color display
- Digital voltmeter and ammeter
- Digital timer
- Window comparator type employed for PASS / FAIL judgement.
- Equipped with remote control function
- Various signal outputs
- Automatic discharge function (during DC operation)
- Provided with zero turn-on switch
- Compact size

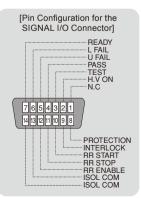
TOS5101 Hipot Tester

Output block			
Applied Voltage		0 to 5/0 to 10 kV AC and DC	
AC			
Maximum Rated *1		500VA / 10 kV, 50 mA	
Waveform		Commercial line waveform	
Voltage Regulation		Max. 15% (for max. rated load to no load)	
Switching		Use of a zero turn-on switch	
DC			
Applied Voltage		50W / 10 kV, 5 mA	
Ripple		100 Vp-p typ. at 10 kV, no load	
		200 Vp-p typ. at max. rated output	
Maximum Rated *1		Max. 3% (for max. rated load to no load)	
Output Voltmeters	1	1	
Analog	Scale	10 kV full scale , AC/DC	
	Class	JIS Class 2.5	
	Accuracy	±5% of full scale	
	AC Indication	Mean value response / rms value scale	
Digital	Full Scale	5 kV / 10 kV full scale	
	Accuracy	$\pm 1.5\%$ of full scale	
A	AC Response	Mean value response / rms value display	
Ammeter	A coursers	1(50(+ 200 A) of paper	
Digital	Accuracy	$\pm (5\% + 20\mu A)$ of upper cutoff current	
Decc/fail Indecement	AC Response	Mean value response / rms value display	
Pass/fail Judgement	Function	Window comparator type	
Type of Judgement		Window comparator type •FAIL judgement	
		*When current detected above upper cutoff current	
		*When current detected below lower cutoff current	
		(FAIL signal generated when FAIL judgement made)PASS judgement	
		*When set time has elapsed and no abnormality is	
		detected	
Upper cutoff curren	t setting range	AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA	
Lower cutoff current	t setting range	AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA	
Judgement Accurac	у	\pm (5% of upper cutoff current + 20µA)	
Current Detection		Integration of current absolute value fol-	
		lowed by comparison with reference value.	
Calibration		With rms value of sine wave using a pure	
		resistance load.	
No-load output volt	age required	Approx. 970 V when set to 50 mA AC	
for detection		Approx. 160 V when set to 5 mA DC	
Test Time Setting R	ange	0.5 to 999 sec (±10 ms) (timer-off function provided)	
Accuracy		±20 ms	
Line Voltage		100V±10%, 50/60 Hz (Nominal voltages of	
		110V, 120V, 220V, 230V and 240V	
		available as factory options.)	
Power Requirement			
for line voltage of 1	00 V	Max. 50 VA under no-load conditions	
		/ Approx. 600 VA at rated load	
for line voltage of 1	00 V to 200 V	Max. 50 VA under no-load conditions	
		/ Approx. 600 VA at rated load	
for line voltage of 2	20 V to 240 V	Max. 50 VA under no-load conditions	
		/ Approx. 610 VA at rated load	
Electromagnetic con	npatibility (EMC) *3	Conforms to the requirements of the	
		following directive and standard.*2	
		EMC Directive 2004/108/EC EN 61326-1	
		EN 61326-1 EN 61000-3-2	
		EN 61000-3-2 EN 61000-3-3	
		Under following conditions	
		1. Used HV test leadwires which is	
		supplied.	
		2. No discharge in testing.	
		3. Used the shielded cable which length is	
		less than three meters when the SIGNAL	
		I/O is used.	

Safty *3	Conforms to the requirements of the follow- ing directive and standard. *2,*4		
	Low Voltage Directive 2006/95/EC		
	EN 61010-1 Pollution degree 2		
	UL1244(The UL-approved products		
	with input voltage of 120VAC satisfy the		
	UL1244 standerd.)		
Insulation resistance	30 MΩ or more (500 V DC)		
Hipot	1390 VAC, 2 seconds [between the AC LINE and chassis]		
	1200 VAC, 1 second [UL-approved products only]		
Environment	Specification range : 5 °C to 35°C / 20 %rh to 80 %rh		
	Operable range : 0 °C to 40°C / 20 %rh to 80 %rh		
	Storage range : -20 °C to 70 °C / 80 %rh or less		
Dimensions (maximum)	430[16.9 inch] W ×		
	177[6.97 inch] (195[7.68 inch]) H ×		
	370[14.6 inch] (450[17.7 inch]) D mm		
Weight			
for line voltage of 100 V	Approx. 21 kg (Approx. 46.30 lbs)		
for line voltage of 100 V to 120 V	Approx. 23 kg (Approx. 50.70 lbs)		
for line voltage of 220 V to 240 V	Approx. 24 kg (Approx. 52.91 lbs)		
Accessories			
High-voltage test lead	TL01-TOS (max.allowablevoltage: 5 kV /1.5m)		
	TL03-TOS (max.allowablevoltage: 10 kV /1.5m)		
Others	14-pin amphenol plug (assembled)		
t l. Continuous output time more he line	ited depending on surrent high limit reference		


*1: Continuous output time may be limited depending on current high limit reference value and ambient temperature.

*2: Only on models that have CE marking on the panel. Not applicable to custom order models.


*3: Not applicable to custom order models.

*4: This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.

-External dimensional diagrams-

Unit: mm

Insulation Resistance Tester

Complied with the test voltage -25 V to -1000 Vdc of the JIS C 1302-2002

TOS7200(IR)

RS232C

Testing voltage range -25 V to -1,000 V, Resistance measurement range 0.01 M Ω to 5,000 M Ω

The TOS7200 is an insulation resistance tester available for a wide range of various electric and electronic components, as well as electric and electronic equipment. The output voltage can be set at desired value in the range of - 25 V to -1,000 V with a resolution of 1 V. (conforms with the output characteristics of the JIS C 1302-2002) . As it is fitted with a window comparator and timer function, the tester is capable of efficiently conducting insulation resistance tests based on various safety standards. In addition, this product is equipped with panel memory as standard feature, which can be recalled by remote control, SIGNAL I/O connector, and the RS-232C interface for easy automatic testing system construction.

- Provided with the discharge function
- Equipped with the window comparator
- Hold function (which holds the measured resistance at the end of testing while PASS judgment is being output)
- Provided with the timer function
- Rear output terminals
- Measured-value monitoring terminals
- Equipped with the panel memory (enabling 10 different settings to be stored)
- Equipped with the SIGNAL I/O connector and remote control terminal
- Equipped with the RS232C interface as standard

TOS7200 Insulation Resistance Tester

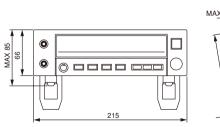
Maximum rated load 10 Vp-p or less Short-circuiting current 12 mA or less Output rise time 50 ms or less (10 % to 90 %) [no load] Discharge function Forced discharge at the end of test (discharge resistance: 25 kΩ) Voltmeter 0 V to -1200 V Measurement range 0 V to -1200 V Resolution 1 V Accuracy \pm (1 % of reading +1 V) Resistance meter 0.01 MΩ to 5000 MΩ (In the range of over 100 nA to a maximum rated current of 1 mA) Display $\boxed{R < 10.0 M\Omega}$ $\boxed{100 M\Omega \le R < 100.0M\Omega}$ $\boxed{1000 M\Omega \le R \le 5000M\Omega}$ R = measured insulation resistance Accuracy $\boxed{R < 10.0 M\Omega}$ $\boxed{10.0 M\Omega \le R < 100.0M\Omega}$ $\boxed{1000 M\Omega \le R \le 5000M\Omega}$ R = measured insulation resistance Maximum rated $\boxed{100 nA < i \le 200 nA}$ $\boxed{200 nA < i \le 1 \muA}$ $1 \muA < i \le 1 mA$ $\boxed{1000 M\Omega \le R \le 5000M\Omega}$ R = measured insulation resistance Accuracy $\boxed{100 nA < i \le 200 nA}$ $\underbrace{200 nA < i \le 1 \muA}$ $1 \muA < i \le 1 mA$ $i = measured output-voltage value/measured resistance value In the humidity range of 20 % th to 70 % th no condensation), with no disturbance such as swinging of the test leadwire] In the humidity range of 20 % th to 70 % th no condensation), with no disturbance such as swinging of the test leadwire]$	Output section									
Accuracy 11 5 % ording + 2 V) Maximum rate de curcuit 1 M/1 100 V/T mA) Maximum rate de curcuit 1 M/1 100 V/T mA) Maximum rate de curcuit 1 M/1 100 V/T mA) Maximum rate de curcuit 1 M/1 100 V/T mA) Maximum rate dual dual monolulu 1 M/1 00 V/T mA) Maximum rate dual dual monolulu 1 M/1 00 V/T mA) Short-Actinitiating current 1 m/2	Output voltage rang	ge	-25 V to -1000 V							
Maxmar nucl lasd 1 W (1 00 V) na, weights Object 1PT 1 nA Object 1PT 1 nA Object 1PT 1 nA Standard 2DC Planting veights		Resolution	1 V							
Maximum rated current 1 mA Oright trouidal Point type Induition voltage 1000 V10C Ripple D00 V of and and 2 VP-p or fast 2 VP-p or fast Stort storaining control 12 mA or less 000 V of and the oright type Induition voltage 000 V or 100 V		Accuracy	±(1.5 % of setting	g+2 V)						
Output Instruction Output Instruction Output Instruction Ringhe 1000 VDC Ringhe 20 Pp or less Maximum med Vad 10 Pup or notes Short-curaciting_currention 12 Pu A or less Durput first finite 50 ms or less (10 % to 90 %) [os load] Decknogt function Forced diversings and or of less Reading 0 V to 1200 V Reading 1 V Massacconcert range 0 V to 1200 V Readings 0 V to 1200 V	Maximum rated loa	ıd	1 W (1 000 V/1 n	ıA)						
Origin terminals Evolution volution 100 Vpc Ripple 100 V vides no local 10 Vpc por less Short-extracting current 12 nA or less	Maximum rated current		1 mA							
Isolation couloge =1000 VDC Isolation couloge 2 Vpp or iss Store-couloge council councouncil councouncil council council counci counci council counc		Output type	Floating							
Right 1000 V issue raised 12 Pays or liss Short-siculing current 12 mA or loss 20 mg in raised 30 mg in liss (0 % in 0 % in 0 mg in logd) Dicharge function 50 mg in liss (0 % in 0 % in 0 % in logd)	Output terminals	Isolation voltage	±1000 VDC							
Solution in the image of the set of the solution of the solutio	Ripple	-	2 Vp-p or less							
Output rise time 50 mm or less (10 % to 50 %) [no load] Declarge function Forced dacharge at the end of less (discharge resistance: 25 kG) Wessurement range 0 V to -1200 V Resolution 1 V Accuracy 4(1 % to reading +1 V) Resolution 1 V Accuracy 4(1 % to reading +1 V) Resolution 1 V Accuracy 1 001 MQ 100MQ 3 R <100MQ 100MQ 100M	FF · · · · · · · · · · · · ·		10 Vp-p or less							
Dasharge function Forced discharge at the end of test (discharge resistance: 25 LO) Vibinater 0 V to -1200 V Resolution 1 N Accuracy 1 N 1 N All TO Automical Value Mages the current measurement range accurating to the measured current value All TO Automical Value Mages the current measurement range social to the output voltage sort value and LOWER as value (not IOPER OFP status). Holds the resistance value equal to tighter than the upper resistance is detected, FAIL LED Lighth. N	Short-circuiting current		12 mA or less							
Voltmoder Vision Measurement range 0 V to 1200 V Resolution 1 V Accuracy 4(15 of reading +1 V) Resistance meter Image: Control of the stand of the stange of over 100 nA to a maximum rated current of 1 mA) Display R = - 100 MQ ID MQ A ID MQ A<td colspan="2">Output rise time</td><td>50 ms or less (10</td><td>% to 90 %) [no load]</td><td></td><td></td><td></td><td></td><td></td>	Output rise time		50 ms or less (10	% to 90 %) [no load]						
Measurement range 0 V n = 200 V Resolution 1 V Accuracy 4 (1% of reading +1 V) Resistance meter 00 IM DIS 5000 MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Display Image: Control MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Accuracy Image: Control MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Accuracy Image: Control MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Accuracy Image: Control MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Accuracy Image: Control MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Accuracy Image: Control MQ (In the range of over 100 nA to 2 mA to 70 %th to 70 %th to 70 %th to 70 %th to ordenstation, with no disturbance such as swinging of the test leadwire] Accuracy The current measurement range is selectable between ALTCO and FIX Action Image: Control MQ (In the resistance value obtained at the ord of testing while a PASS judgment is being output. Image: Control MQ (In the resistance value obtained at the det of festing while a PASS judgment is being output. Judgmenet function Image: Control MQ (In the output is a control word provide detected. FAIL LED light. ON Outputs an UPPER FAIL DI OpER (In the output is a control word provide detected. FAIL	Discharge function		Forced discharge	at the end of test (dischar	ge resistance: 25 kΩ)					
Resolution I V Accuracy A(1) % of reading +1 V) Resistance meter 001 MG to 5000 MG (in the range of over 100 nA to a maximum rated current of 1 mA) Display $\mathbb{R} < 100 MG$	Voltmeter		•							
Accuracy 4(1% of reading +1 V) Resistance meter Measurement range 0.01 MQ to 5000 MQ (In the range of over 100 nA to a maximum rated current of 1 mA) Display $\boxed{R < 10.0 MQ}$ $\boxed{10.0 MQ \le R < 100.0 MQ}$ $\boxed{100.0 MQ \le R < 100.0 MQ}$ $\boxed{R < measured}$ insulation resistance Accuracy $\boxed{100 nA < 1 \le 200 nA < 200 nA < 1 \le 11A}$ $1 \mu A < 1 \le 1 mA$ $\boxed{1000 MQ = R < 500.0 MQ}$ Accuracy $\boxed{100 nA < 1 \le 200 nA < 200 nA < 1 \le 11A}$ $1 \mu A < 1 \le 1 mA$ $\boxed{1000 MQ = R < 600.0 MQ}$ Accuracy $\boxed{100 nA < 1 \le 200 nA < 200 nA < 1 \le 11A}$ $1 \mu A < 1 \le 1 mA$ $\boxed{1000 MQ = R < 600.0 MQ}$ Measurement range The current measurement range is electable between AUTO and FIX. Fixes the current measurement range based on the output voltage and LOWER set value (in UPER OFF status). Holding function Holds the resistance value obtained at the end of testing while a PASS judgment is being output. Diggment function Judgement function Holds the resistance value equal or higher and returns a 10WIR FAIL loging. Diver MIX is the status of the output and returns a 10WIR FAIL loging. ON Output a LFAIL signal Judgement method action $1000 MQ = 10 \times 100 \times $	Measurement range	2	0 V to -1200 V							
Reasonee meter 0.01 MΩ to 5000 MΩ (in the range of over 100 nA to a maximum rated current of 1 mA) Daplay R < 100 MΩ (i) 500 MΩ (in the range of over 100 nA to a maximum rated current of 1 mA)	Resolution		1 V							
Measurement range 0.01 MD to 5000 MD (In the mage of over 100 nA to a maximum rated current of 1 mA) Display R = 10.0 MD 10 0MD 2 R < 100 MD 0 0MD 2 R < 5000MD	Accuracy	·	±(1 % of reading	+1 V)						
Display $ \begin{bmatrix} R < 10.0 \text{ MG} & 10.0 \text{ MG} < R < 100.0 \text{ MG} & 100.0 \text{ MG} < R < 100.0 \text{ MG} & 100.0 \text{ MG} $	Resistance meter									
$ \begin{array}{ c $	Measurement range	2	0.01 MΩ to 5000	$M\Omega$ (In the range of over	r 100 nA to a maximum	rated current of 1 mA)			
$ \begin{array}{ c $			R < 10.0 MO	$10.0M\Omega < R < 100.0M\Omega$	$100.0M\Omega < R < 1000$	$M\Omega$ 1000 $M\Omega$ < R < 50	000MQ			
Accurscy ± (10 % of reading) ± (2 % of reading) 1="measured output-voltage value measured resistance value In the humidity range of 20 %th for 70 %th (no condensation), with no distrubance such as swinging of the test leadwire] Measurement range MUTO Automatically changes the current measurement range is selectable between AUTO and FIX. Holding function Holds the resistance value obtained at the end of testing while a PASS judgement is being output. The current measurement range is selectable between AUTO and FIX. Judgement function Judgement function Holds the resistance value obtained at the end of testing while a PASS judgement is being output. Mutom and the test of the output voltage set value and LOWER set value of motors UPFER LED lights. UPFER FAIL: If a resistance value capal or higher than the upper resistance is detected. FAIL LED lights. ON Outputs an the tester shuts off the output and returns an UPFER FAIL judgement. UPFER FAIL: UPFER FAIL: If a resistance value capal or light than the upper resistance is detected. FAIL SED lights. ON Outputs a the tester shuts off the output and returns an LOWER FAIL Judgement wait time UPFER FAIL signal LOWER FAIL LIBD lights. LIPAIL Signal LOWER FAIL used and the set set stime bas elagesed. PASS signal is input. * A PASS signal is input. * A FAISS signal is input. * A PASS sidgement is	Display						K – measur	ed insul	ation resistance	
Accurscy ± (10 % of reading) ± (2 % of reading) 1="measured output-voltage value measured resistance value In the humidity range of 20 %th for 70 %th (no condensation), with no distrubance such as swinging of the test leadwire] Measurement range MUTO Automatically changes the current measurement range is selectable between AUTO and FIX. Holding function Holds the resistance value obtained at the end of testing while a PASS judgement is being output. The current measurement range is selectable between AUTO and FIX. Judgement function Judgement function Holds the resistance value obtained at the end of testing while a PASS judgement is being output. Mutom and the test of the output voltage set value and LOWER set value of motors UPFER LED lights. UPFER FAIL: If a resistance value capal or higher than the upper resistance is detected. FAIL LED lights. ON Outputs an the tester shuts off the output and returns an UPFER FAIL judgement. UPFER FAIL: UPFER FAIL: If a resistance value capal or light than the upper resistance is detected. FAIL SED lights. ON Outputs a the tester shuts off the output and returns an LOWER FAIL Judgement wait time UPFER FAIL signal LOWER FAIL LIBD lights. LIPAIL Signal LOWER FAIL used and the set set stime bas elagesed. PASS signal is input. * A PASS signal is input. * A FAISS signal is input. * A PASS sidgement is										
Accuracy [±(10% of reading)] ± (2% of reading)] 1.1 ± 0.1 In the humidity range of 20% the 70% %th (no condensation), with no disturbance such as swinging of the test leadwire] Measurement range The current measurement range is selectable between AUTO and FIX. IN the humidity range of 20% the 70% %th (no condensation), with no disturbance such as swinging of the test leadwire] Holding function Holds the resistance value obtained at the end of testing while a PASS judgment is being output. Judgement function Holds the resistance value colar of the output and returns and UPPER FAIL (Judgment.) Judgement function Indgement method UPPER FAIL (Judgment.) I OWER FAIL Far esistance value equal or higher than the upper resistance is detected. FAIL ED lights. ON Outputs an UFAIL signal Judgement method/action UPPER FAIL (Judgment.) I resistance value equal or higher than the upper resistance is detected. FAIL ED lights. ON Outputs an UFAIL signal Judgement method/action PASS if and returns a LOWER FAIL (Judgment.) I resistance value equal or higher the stat. I pAIL signal I CWER FAIL (Judgment.) I PAIL signal I CWER FAIL (Judgment.) I PAIL signal I CWER FAIL (Judgment.) I PAIL signal I PAIL Signal I CWER FAIL (Judgment.)			$100 \text{ nA} \le i \le 20$	00 nA 200 $n\text{A} < i \le 1 \mu\text{A}$	A $1 \mu A \le i \le 1 mA$	i = measured output x	oltaga valua/maasura	d recist	ance value	
Measurement range The current measurement range is selectable between AUTO and FIX. AUTO Automatically changes the current measurement range according to the measured current value. FIX Fixes the current measurement range based on the output voltage set value and LOWER set value (in UPPER OFF status). Holding function Holds the resistance value coal on higher than the upper resistance is detected. Display Buzzer [SIGNAL L/O Judgement function UPPER FAIL. If a resistance value coal on higher than the upper resistance is detected. FAIL LED lights. ON OUtputs an UPFER FAIL. Judgement method/action I/VER FAIL. If a resistance value coal or higher than the upper resistance is detected. FAIL LED IoN OU Outputs an UPFER FAIL. Judgement method/action Note that no judgement is found when the set test time has elapsed. FAIL LED IoN OU Outputs an UPFER FAIL. Judgement method/action 0.01 MQ to 5000 MQ [In the range of the output and returns a FASS judgement. IoNER FAIL. FAIL SES IDID ON Outputs an UPFER FAIL TO PER FAIL. IoN Values as the common. Judgement method/action 0.01 MQ to 5000 MQ [In the range of the output and returns a FASS judgement. IoNER FAIL. IoN Notputs an UPFER FAIL TO PER FAIL and P	Accuracy		$\pm (10\% \text{ of read})$	ling) $\pm (5\% \text{ of reading})$	$\pm (2\% \text{ of reading})$		onage value/measure	u iesisu	ance value	
Automatically changes the current measurement range based on the output voltage set value and LOWER set value (in UPPER OFF status). Holding function Holds the resistance value obtained at the end of testing while a PASS judgment is being output. Judgment function Judgment action Buzzer [SIGNAL I/O] (UPPR PAIL [If a resistance value qual or higher than the upper resistance is detected. The test shuts off the output and returns an UPPER PAIL LED lights. In the stars shuts off the output and returns an UPPER PAIL [LED lights]. ON Outputs an UPPER PAIL [ED lights]. ON Outputs an UPPER PAIL CD LOWER PAIL IS and returns a PASS judgment. Isights. ON Outputs an UPPER PAIL CD LOWER PAIL Signal is continuously output until a STOP signal is input. A PASS signal is ODM OUTPUT and Tetrum PASS pudgment. Isights. Isights. Isights. Isights. Isights. Isights. Isi			[In the humidity	range of 20 %rh to 70 %r	th (no condensation), w	ith no disturbance such	as swinging of the te	st leadv	vire]	
FIX Fixes the current measurement range based on the output voltage set value and LOWER set value (in UPPER OFF status). Holding function Holds the resistance value obtained at the end of testing while a PASS judgment is being output. Judgment function Judgment function Judgement method UPPER FAIL Jit generation of the start of the output and returns an UPPER KAIL judgment. JUPER FAIL Jit fa resistance value equal or less that the lower resistance. ON Outputs an UPPER KAIL judgment. Judgement method/action Not between subst off the output and returns a LOWER KAIL judgment. JUPER FAIL Infa resistance value equal or less that the lower resistance. ON Outputs an UPPER FAIL signal is continuously output the set set subst off the output and returns a LOWER KAIL judgment. JUPER FAIL off the start of the output and returns a PASS judgment. JUPER SILED ON Outputs an UPFASS signal is output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. An IPPER FAIL for a resistance (UPPER) OOI MQ to 5000 MQ [In the range of the maximum rated current or less] Judgement current IOI 0 A < i ≤ 200 nA 200 A < i ≤ 1 mA <th colspa<="" td=""><td>Measurement range</td><td>9</td><td>The current meas</td><td>urement range is selectab</td><td>le between AUTO and I</td><td>FIX.</td><td></td><td></td><td></td></th>	<td>Measurement range</td> <td>9</td> <td>The current meas</td> <td>urement range is selectab</td> <td>le between AUTO and I</td> <td>FIX.</td> <td></td> <td></td> <td></td>	Measurement range	9	The current meas	urement range is selectab	le between AUTO and I	FIX.			
Holds the resistance value obtained at the end of testing while a PASS judgment is being output. Display Buzzer SIGNAL LO Judgement function		AUTO	Automatically ch	anges the current measure	ement range according t	to the measured current	value.			
Judgment function Judgement method Display Buzzer SIGNAL I/O UPPER FAIL If a resistance value equal or higher than the upper resistance is detected. FAIL LED lights. ON Outputs an Judgement method/action LOWER FAIL If a resistance value equal or higher than the upper resistance is detected. FAIL LED ON Outputs an Judgement method/action DWER FAIL If a resistance value equal or less than the lower resistance is detected. FAIL LED ON Outputs a PASS Tine obtormatify is found when the set test time has elapsed. If ASS LED ON Outputs a PASS Birn obtormatify is found when the set test time has elapsed. If ASS LED ON Outputs a PASS signal is output on approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. - The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common. Setting range for the upper resistance (UPPER) 0.01 MQ to 5000 MQ [In the range of the maximum rated current or less] If MA <i 1="" <i="" ma="" ma<="" td=""> If A <i 3="" mod="" single=""> Magin Judgement accuracy For both UPPER and LOWER 0.01 MQ to 5000 MQ = (1 mod single > MAGIN) If MA <i 1="" <i="" ma="" ma<="" td=""> If A <i 1="" <i="" ma="" ma<="" td=""> <t< td=""><td></td><td>FIX</td><td>Fixes the current</td><td>measurement range based</td><td>l on the output voltage s</td><td>set value and LOWER</td><td>set value (in UPPER</td><td>OFF sta</td><td>tus).</td></t<></i></i></i></i>		FIX	Fixes the current	measurement range based	l on the output voltage s	set value and LOWER	set value (in UPPER	OFF sta	tus).	
$ \begin{aligned} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Holding function	•	Holds the resistar	ice value obtained at the e	end of testing while a PA	ASS judgment is being	output.			
$ \begin{aligned} & \begin{array}{ $	Judgment function		•							
$ \begin{aligned} & \begin{array}{ $			Te deservent	To do our out on other d			Disular	D	SIGNAL 1/O	
Image: here starts off the output and returns an UPPER FAIL judgment. UPPER LED lights UPAIL signal LOWER FAIL If a resistance value equal or less than the judgment value from a LOWER FAIL LDD ON Outputs a Ising range for the output and returns an LOWER FAIL judgment. Note that no judgment is made within the judgment wait time ON Outputs a Ising range for the upper resistance (UPPER) OS stand is output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. •A PASS signal is output for approx. 200 ms. However, they cannot be adjusted individually, as they are set in common. Setting range for the upper resistance (UPPER) 0.01 MQ to 5000 MQ [In the range of the maximum rated current or less] Setting range for the lower resistance (UPPER) 0.01 MQ to 5000 MQ [In the range of the maximum rated current or less] Judgement accuracy Imple: Not Set 200 MQ = 100 for set 200 MQ = 40% of setting + 5digi) = 42% of setting + 3digi) 100 g is < 200 MQ is < 200 MQ i < 2% of setting + 5digi) = 42% of setting + 3digi)					or higher than the upper	registance is detected	- · ·			
Judgement method/action			OTTERTINE					011	•	
Judgement method/actionNote that no judgment is made within the judgment wait timeLOWER LED lights.ONPASSIf no aboremality is found when the set test time has elapsed, the tester shuts off the output and returns a PASS judgment.PASS LEDONOutputs a PASS signal• A PASS signal is output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. • The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (UPPER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement accuracy For both UPPER and LOWER0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement accuracy For both UPPER and LOWER0.01 K < 100 MQ is $R < 500 MQ$ $1000 MQ i R < 500 MQ i = (10% of setting + 5digit)1 < 2% of setting + 3digit)1 < 2% of setting + 3digit)1 < 200 MQ i R < 500 MQ1 < 1000 MQ i R < 500 MQ i = (10\% of setting + 5digit)1 < 10\% of setting + 3digit)1 < 200 MQ i R < 500 MQ i = (10\% of setting + 5digit)1 < 10\% of setting + 3digit)1 < 200 MQ i R < 500 MQ i = (10\% of setting + 5digit)1 < 10\% of setting + 3digit)1 < 1000 MQ i R < 500 MQ i = (10\% of setting + 5digit)1 < 10\% of setting + 3digit)1 < 1000 MQ i R < 500 MQ i = (10\% of setting + 5digit)1 < 10\% of setting + 5digit)1 < 10\% o$			LOWER FAIL	If a resistance value equa	al or less than the lower	resistance is detected,	FAIL LED	ON	Outputs a	
Judgement method/action(WAIT TIME) after the start of the test.lights.oPASSIf no abnormality is found when the set test time has elapsed, the tester shuts off the output and returns a PASS judgement.PASS LED lights.ONOutputs a PASS signal• A PASS signal is output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. • An UPPER FAIL or LOWER FAIL signal is continuously output until a STOP signal is input. • The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (UPPER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement accuracy0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement accuracy100 $e < < 100 \text{ M} < i \leq 200 \text{ nA}$ For both UPPER and LOWER $0.01 \& < < 100 MQ$ $100 \& < < 200 MQ$ $1(0\% of setting + 5digit)$ $200 MQ \leq R < 5000 MQ$ $1(0\% of setting + 5digit)$ $2(5\% of setting + 5digit)$ $1(2\% of setting + 3digit)$ $100 \& < < 200 MQ \leq R < 5000 MQ1(0\% of setting + 5digit)2(5\% of setting + 5digit)1(2\% of setting + 3digit)100 \& < R < 5000 MQ1(0\% of setting + 5digit)2(5\% of setting + 5digit)1(2\% of setting + 3digit)100 MQ \leq R < 5000 MQ1(0\% of setting + 5digit)100 MQ \leq R < 5000 MQ1(0\% of setting + 5digit)1(2\% of setting +$							0		L FAIL signal	
PASSIf no abnormality is found when the set test time has elapsed, the tester shuts off the output and returns a PASS judgment.PASS LED lights.ONOutputs a PASS signal• A PASS signal is output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input. • An UPPER FAIL or LOWER FAIL signal is continuously output until a STOP signal is input. • The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (LOWER)0.01 MΩ to 5000 MΩ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MΩ to 5000 MΩ [In the range of the maximum rated current or less]Judgement current100 nA < i 200 nA < i 200 nA < i 51 µA	Judgement method	lastion				ient wait time				
InterstandInterstandInterstandInterstandInterstandInterstandOutput und in the test duration (TEST TIME)Output und in the test duration (TEST TIME)Output und in test output for approx. 200 ms. However, if the PASS HOLD function is set to "HOLD," the signal is continuously output until a STOP signal is input.A PASS signal is output for approx. 200 ms. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)OUT NG A < 200 NA < 100 NA < i ≤ 200 nA < 200 NA < i 10 NA < i ≤ 200 nA	Judgement method/	action	PASS	· ,		has elapsed	-	ON	Outputs a	
output until a STOP signal is input. • An UPPER FAIL or LOWER FAIL signal is continuously output until a STOP signal is input. • The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (UPPER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement current100 nA < i ≤ 200 nA			11100	-		· ·		011		
output until a STOP signal is input. • An UPPER FAIL or LOWER FAIL signal is continuously output until a STOP signal is input. • The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (UPPER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement current100 nA < i ≤ 200 nA			• A PASS signal i	s output for approx. 200 r	ns. However, if the PAS	SS HOLD function is so	et to "HOLD," the sig	nal is co	ontinuously	
• The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in common.Setting range for the upper resistance (UPPER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MQ to 5000 MQ [In the range of the maximum rated current or less]Judgement current100 nA < i ≤ 200 nA							, ,		2	
Setting range for the upper resistance (UPPER)O.01 MΩ to 5000 MΩ [In the range of the maximum rated current or less]Setting range for the lower resistance (LOWER)0.01 MΩ to 5000 MΩ [In the range of the maximum rated current or less]Judgement current100 nA < i ≤ 200 nA				• An UPPER FAIL or LOWER FAIL signal is continuously output until a STOP signal is input.						
Setting range for the lower resistance (LOWER)0.01 M\Omega to 5000 M\Omega [In the range of the maximum rated current or less]Judgement current100 nA < i ≤ 200 nA200nA < i ≤ 1 µA1 µA 1 µA <th c<="" td=""><td></td><td></td><td>• The FAIL and P</td><td>ASS buzzer volumes are a</td><td>adjustable. However, th</td><td>ey cannot be adjusted i</td><td>ndividually, as they a</td><td>re set in</td><td>common.</td></th>	<td></td> <td></td> <td>• The FAIL and P</td> <td>ASS buzzer volumes are a</td> <td>adjustable. However, th</td> <td>ey cannot be adjusted i</td> <td>ndividually, as they a</td> <td>re set in</td> <td>common.</td>			• The FAIL and P	ASS buzzer volumes are a	adjustable. However, th	ey cannot be adjusted i	ndividually, as they a	re set in	common.
Judgement accuracy For both UPPER and LOWERJudgement current100 nA < i ≤ 200 nA200nA < i ≤ 1 µA1 µA < i ≤ 1 mA 1 (2% of setting + 3digit) 4 (2% of setti	Setting range for the up	Setting range for the upper resistance (UPPER)		$M\Omega$ [In the range of the r	maximum rated current	or less]				
Judgement accuracy For both UPPER and LOWER $0.1 \le R < 10.0 M\Omega$ $ +$ $+$. ,				-				
Judgement accuracy For both UPPER and LOWER $10.0 \le R < 50.0 \ M\Omega$ $$ $\pm (5\% \text{ of setting + 5digit)}$ $\pm (2\% \text{ of setting + 3digit)}$ \pm	Setting range for the lo	ower resistance (LOWER)	0.01 MΩ to 5000	$M\Omega$ [In the range of the		-				
Judgement accuracy For both UPPER and LOWER $50.0 \le R < 100 M\Omega$	Setting range for the lo	ower resistance (LOWER)	1		maximum rated current	or less]	$1 \ \mu A < i \le 1 \ mA$			
Judgement accuracy For both UPPER and LOWER $100 M\Omega \leq R < 200 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) \pm (2\% of setting + 3digit) 100 M\Omega \leq R < 500 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) \pm (2\% of setting + 3digit) 100 M\Omega \leq R < 1000 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) \pm (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) \pm (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 5digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 M\Omega \leq R 100 M\Omega \leq R 100 M\Omega \leq R < 2000 M\Omega \pm (10\% of setting + 100digit) \pm (5\% of setting + 5digit) = (2\% of setting + 3digit) 100 mI = (2\% of MI = 10\% of N = 10\% of N$	Setting range for the lo	ower resistance (LOWER)	Judgement curr	ent R 0.01 \leq R $<$ 10.0 M Ω	maximum rated current	or less] $200nA < i \le 1 \mu A$ $-$	± (2 % of setting + 3digi	_		
Judgement accuracy For both UPPER and LOWER Image: The humidity must be in the range of 200 %/r to 70 %/r h to	Setting range for the lo	wer resistance (LOWER)	Judgement curr	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$	maximum rated current $100 \text{ nA} < i \le 200 \text{ nA}$ —	or less] 200nA < i \le 1 μ A - \pm (5 % of setting + 5digit)	$\pm (2 \% \text{ of setting} + 3 \text{ digi})$ $\pm (2 \% \text{ of setting} + 3 \text{ digi})$	t)		
For both UPPER and LOWER $\frac{500 \text{ MM}_{2} \text{ R} < 1000 \text{ MQ} = 1 (10 \text{ Mol kching } 50\text{ dight}) = 1(5 \text{ % of setting } 50\text{ dight}) = 1(2 \text{ Mol kching } 50\text{ dight}) = 1(2 \text$	Setting range for the lo	wer resistance (LOWER)	Judgement curr	ent $R = \frac{0.01 \le R < 10.0 \text{ M}\Omega}{10.0 \le R < 50.0 \text{ M}\Omega}$ $50.0 \le R < 100 \text{ M}\Omega$	maximum rated current 100 nA < i ≤ 200 nA — — — —	or less] 200nA < i $\leq 1 \mu A$ $\pm (5\% \text{ of setting + 5digit})$ $\pm (5\% \text{ of setting + 5digit})$	$\pm (2 \% \text{ of setting + 3digit})$ $\pm (2 \% \text{ of setting + 3digit})$ $\pm (2 \% \text{ of setting + 3digit})$	t) t)		
$\frac{1000 \text{ MM} \leq \text{K} < 2000 \text{ MM}}{2000 \text{ MM} \leq \text{K} < 2000 \text{ MM}} = 1(0\% \text{ of setting + 300 gM}) = 2(3\% \text{ of setting + 300 gM}) =$			Judgement curr	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$	maximum rated current 100 nA < i \leq 200 nA 	or less] $\begin{array}{c} \hline 200nA < i \leq 1 \ \mu A \\ \hline \\ \pm (5 \ \% \ of setting + 5 digit) \\ \pm (5 \ \% \ of setting + 5 digit) \\ \pm (5 \ \% \ of setting + 5 digit) \\ \pm (5 \ \% \ of setting + 5 digit) \end{array}$	$\begin{array}{l} \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \end{array}$	t) t) t) t)	deemont ourset =	
Time Setting range for the test duration (TEST TIME) 0.5 s to 999 s (TIMER OFF function provided) Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accurac	y	Judgement curr		maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i $\le 1 \mu A$ $\pm (5\% of setting + 5digit)$ $\pm (5\% of setting + 5digit)$	$\begin{array}{l} \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \end{array}$	t) t) t) t) Juo	•	
such as swinging of the test leadwires.] [The lower judgment requires a test duration of 0.5 s or more after the wait time has expired. It also requires a wait time of 1.0 s or more for a lower judgment of 200 nA or less.] Time Setting range for the test duration (TEST TIME) 0.5 s to 999 s (TIMER OFF function provided) Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accuracy	y	Judgement curr		maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 µA \pm (5 % of setting + 5digit) \pm (5 % of setting + 5digit)	$\begin{array}{c} \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \pm (2 \ \% \ \text{of setting} + 3 \ \text{digi} \\ \end{array}$	t) t) t) t) t) t) tes	t voltage	
of 1.0 s or more for a lower judgment of 200 nA or less.] Time Setting range for the test duration (TEST TIME) 0.5 s to 999 s (TIMER OFF function provided) Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accuracy	y	Judgement curr UPPER, LOWE		maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i $\leq 1 \mu A$ $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 50digit)}$	$\begin{array}{c} \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \\ \end{array} \\ \begin{array}{c} - \\ - \end{array}$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
Time Setting range for the test duration (TEST TIME) 0.5 s to 999 s (TIMER OFF function provided) Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accuracy	y	Judgement curr UPPER, LOWEI		maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i $\leq 1 \mu A$ $\pm (5\% of setting + 5digit)$ $\pm (5\% of setting + 50digit)$	$\begin{array}{c} \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \pm (2 \ \% \ \text{of setting + 3digi} \\ \\ \end{array} \\ \begin{array}{c} - \\ - \end{array}$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
Setting range for the test duration (TEST TIME) 0.5 s to 999 s (TIMER OFF function provided) Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accurac	y	Judgement curr UPPER, LOWEI [The humidity misuch as swinging [The lower judgn]	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$ $500 M\Omega \le R < 1000 M\Omega$ $1000 M\Omega \le R < 2000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$	maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 μ A \pm (5 % of setting + 5digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit)	$\begin{array}{c} \pm (2 \% \text{ of setting + 3digi}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
Setting range for the wait time (WAIT TIME) 0.3 s to 10 s [TEST TIME > WAIT TIME]	Judgement accurac	y	Judgement curr UPPER, LOWEI [The humidity misuch as swinging [The lower judgn]	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$ $500 M\Omega \le R < 1000 M\Omega$ $1000 M\Omega \le R < 2000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$	maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 μ A \pm (5 % of setting + 5digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit)	$\begin{array}{c} \pm (2 \% \text{ of setting + 3digi}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
	Judgement accurac For both UPPER ar	y	Judgement curr UPPER, LOWEI [The humidity misuch as swinging [The lower judgn]	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$ $500 M\Omega \le R < 1000 M\Omega$ $1000 M\Omega \le R < 2000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $1000 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$ $100 H\Omega \le R < 500 M\Omega$	maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 μ A \pm (5 % of setting + 5digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit)	$\begin{array}{c} \pm (2 \% \text{ of setting + 3digi}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
Accuracy $\pm (100 \text{ ppm} + 20 \text{ ms})$	Judgement accuracy For both UPPER ar Time	y nd LOWER	Judgement curr UPPER, LOWEI [The humidity misuch as swinging [The lower judgn of 1.0 s or more	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$ $500 M\Omega \le R < 1000 M\Omega$ $1000 M\Omega \le R < 2000 M\Omega$ $1000 M\Omega \le R < 5000 M\Omega$ $2000 M\Omega \le R < 5000 M\Omega$ $200 0 M\Omega \le R < 5000 M\Omega$ $200 m\Omega \le R < 5000 M\Omega$ $200 m\Omega \le R < 5000 M\Omega$ $100 m\Omega \le R < 500 M\Omega$	maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 μ A \pm (5 % of setting + 5digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit)	$\begin{array}{c} \pm (2 \% \text{ of setting + 3digi}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	
	Judgement accuracy For both UPPER ar Time Setting range for the ter	y nd LOWER st duration (TEST TIME)	Judgement curr UPPER, LOWEI [The humidity m such as swinging [The lower judgn of 1.0 s or more 0.5 s to 999 s (TT)	ent R $0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 500 M\Omega$ $500 M\Omega \le R < 1000 M\Omega$ $1000 M\Omega \le R < 2000 M\Omega$ $2000 M\Omega \le R < 5000 M\Omega$ $2000 M\Omega \le R < 5000 M\Omega$ $1000 M\Omega \le R < 1000 M\Omega$ 1	maximum rated current 100 nA < i \leq 200 nA 	or less] 200nA < i \leq 1 μ A \pm (5 % of setting + 5digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit) \pm (5 % of setting + 50digit)	$\begin{array}{c} \pm (2 \% \text{ of setting + 3digi}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	t) t) t) t) t) t) tes /(U	t voltage JPPER,LOWER)	

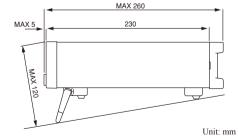
Insulation Resistance Tester

Interface and Other Functions

	DTE			6-pin mini-DIN connector on the The optional remote controller R (note that a DIN-mini DIN adap	RC01-TOS or RC02-TOS is connected to remotely control starting/stopping of a ter
IGN	AL I/O			D-SUB 25-pin connector on the	•
				For names and descriptions of co	onnector signais.
	Signal name	I/O	Description of signal		
1	PM0	<u> </u>	LSB *	[Pin Configuration for the	
2	PM1		*	SIGNAL I/O Connector]	
3	PM2 PM3		MSB *		
4 5	N.C	1	NISB	13 12 11 10 9 8 7 6 5 4 3 2 1	
5 6	N.C			25 24 23 22 21 20 19 18 17 16 15 14 /	
7	N.C				
3	N.C				
9	STB	I	Input terminal for the strobe si	gnal of the panel memory	
0	N.C				
1	N.C				
2	N.C				
3	COM		Circuit common (chassis poter		
4	HV ON	0	ON during a test or while a vol terminals	Itage remains between the output	
5	TEST	0	ON during a test		
				hen PASS judgment is made, or continu	lously
6	PASS	0	ON while PASS HOLD is activ		-
7	U FAIL	0		ation resistance equal to or exceed-in	g the
			upper resistance is detected, r		with a
8	L FAIL	0	Continuously ON if an insula lower resistance is detected, r	tion resistance equal to or falling below resulting in FAIL judg-ment	w the
9	READY	0	ON during standby	counting in the judg-ment	
20	N.C				
1	START	1	Input terminal for the START s	signal	
2	STOP	1	Input terminal for the STOP sig	-	
3	ENABLE	1	Remote control enable signal	-	
4	N.C				
digit inel i		ection	signal input terminal		
anel i Iemor	BCD active L memory's sel- ry recall by lat	ection tching	iput		
-digit anel i emor	BCD active L memory's sel ry recall by lat	ection tching	put signal input terminal this selection signal at the rise o	of the strobe signal	
-digit anel i emor	BCD active L memory's sel ry recall by lat specifications High-leve	ection tching 3 el inpu	put signal input terminal this selection signal at the rise o t voltage	of the strobe signal	All input signals are active Low controlled.
digit anel i emor	BCD active L memory's sel- ry recall by lat specifications High-leve Low-leve	ection tching s el inpu l inpu	put signal input terminal this selection signal at the rise o t voltage t voltage	11 V to 15 V 0 V to 4 V	All input signals are active Low controlled. The input terminal is pulled up to +12 V using a resistor.
digit anel i emor	BCD active L memory's sel ry recall by lat specifications High-leve Low-leve Low-leve	ection tching s el inpu l inpu l inpu	put signal input terminal this selection signal at the rise o t voltage t voltage t current	11 V to 15 V 0 V to 4 V -5 mA maximum	All input signals are active Low controlled. The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
digit anel i emor put s	BCD active L memory's sel y recall by lat specifications High-leve Low-leve Low-leve Input time	ection tching s el inpu l inpu l inpu e widt	put signal input terminal this selection signal at the rise o t voltage t voltage t current	11 V to 15 V 0 V to 4 V	The input terminal is pulled up to +12 V using a resistor.
odigit anel i emor put s	BCD active L memory's sel y recall by lat specifications High-leve Low-leve Input time t specificatio	ection tching s el inpu l inpu l inpu e widt ns	put signal input terminal this selection signal at the rise o t voltage t voltage t current	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
-digit anel i emor put s	BCD active L memory's sel y recall by lat specifications High-leve Low-leve Low-leve Input time t specificatio	ection tching s el input l input l input e widt ns ethod	put signal input terminal this selection signal at the rise o t voltage t voltage t current h	of the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 5	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
odigit anel i emor put s	BCD active L memory's sel y recall by lat specifications High-leve Low-leve Low-leve Input time t specificatio	ection tching s el input l input l input e widt ns ethod	put signal input terminal this selection signal at the rise o t voltage t voltage t current	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
odigit anel i emor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output without sa	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
odigit anel i emor put s	BCD active L memory's sel y recall by lat specifications High-leve Low-leve Low-leve Input time t specificatio Output m Output wit	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel i emor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output without sa	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 1 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compt	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal.
-digit anel i emor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output with Output sa Maximun	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	of the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel i lemor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output with Output sa Maximun	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3) 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically comprime Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel i lemor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output with Output sa Maximun	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3) 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically comprime Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V;	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel I lemor aput s	BCD active L memory's sel y recall by lat High-leve Low-leve Low-leve Input time t specification Output m Output w Output w Maximun OG OUT	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 2) 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically comprime Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel i lemor put s	BCD active L memory's sel y recall by lat Figh-leve Low-leve Low-leve Input time t specification Output m Output with Output sa Maximun	ection tching s el input l input l input e widt ns ethod ithstar turatio	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	of the strobe signal $\begin{array}{c} 11 \text{ V to 15 V} \\ 0 \text{ V to 4 V} \\ -5 \text{ mA maximum} \\ 5 \text{ ms minimum} \\ \end{array}$ Open collector output (4.5 V to 2) 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically comprimed by the result of the resistance of	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC)
-digit anel i emor put s	BCD active L memory's sel y recall by lat High-leve Low-leve Low-leve Input time t specification Output m Output w Output w Maximun OG OUT	ection tching s el inpu l inpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically comprised Vo = log (1 + Rx / 1M\Omega) where Rx = measured resistance (1 M\Omega: 0.30 V; 10 M\Omega: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V).
-digit anel i put s utput	BCD active L memory's sel ry recall by lat Figh-leve Low-leve Low-leve Input time Output m Output m Output ts Maximun OG OUT + COM Accuracy	ection tching s el inpu l inpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1M\Omega) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V).
ndigit anel i emor put s	BCD active L memory's sel ry recall by lat Figh-leve Low-leve Low-leve Input time Output m Output m Output ts Maximun OG OUT + COM Accuracy	ection tching s el inpu l inpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	of the strobe signal $\begin{array}{c} 11 \ V \ to \ 15 \ V \\ 0 \ V \ to \ 4 \ V \\ -5 \ mA \ maximum \\ 5 \ ms \ minimum \\ \hline \\ Open \ collector \ output \ (4.5 \ V \ to \ 30 \ V \ DC \\ Approx. 1.1 \ V \ (at \ 25^{\circ}C) \\ 400 \ mA \ (TOTAL) \\ Outputs \ a \ logarithmically \ compr \\ Vo = \ log \ (1 + Rx \ / \ 1M\Omega) \\ where \ Rx = \ measured \ resistance \\ (1 \ M\Omega: \ 0.30 \ V; \ 10 \ M\Omega: \ 1.04 \ V; \\ Output \ impedance: \ 1 \ k\Omega \\ Analog \ output-circuit \ common \\ \pm (2 \ \% \ of \ full \ scale) \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \\ D-SUB \ 9-pin \ connector \ on \ the \ resistance \$	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V).
-digit anel i pput s utput NAL	BCD active L memory's sel y recall by lat Figh-leve Low-leve Input time t specification Output m Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy	ection tching s el inpu l inpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1M\Omega) where Rx = measured resistance (1 M\Omega: 0.30 V; 10 M\Omega: 1.04 V; Output impedance: 1 k\Omega Analog output-circuit common $\pm (2\%$ of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable.
NAL	BCD active L memory's sel y recall by lat Figh-leve Low-leve Input time t specification Output m Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy	ection tching s el inpu l inpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. os (data: 8 bits; parity: none; stop bit: 2 bits fixed)
-digit anel i lemor pput s utput NAL S232 ispla lemo	BCD active L memory's sel- y recall by lat High-leve Low-leve Input time t specification Output m Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate	ection tching s el inpu l inpu l inpu e widt ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. bs (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display
-digit anel i lemor uput s utput NAL S232 ispla lemo acku	BCD active L memory's sel- y recall by lat ligh-leve Low-leve Input time t specification Output m Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate y ry function	ection tching s el inpu l inpu l inpu e widt ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h id voltage on voltage	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage A maximum of 10 types of test of	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. bs (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display
-digit anel i lemor uput s utput NAL S232 ispla lemo acku	BCD active L memory's sel- y recall by lat High-leve Low-leve Input time t specification Output m Output wi Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate y ry function p battery life	ection tching s el inpu i linpu e widt ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h ind voltage on voltage ut current	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1M\Omega) where Rx = measured resistance (1 M Ω : 0.30 V; 10 M Ω : 1.04 V; Output impedance: 1 k Ω Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage A maximum of 10 types of test of 3 years or more (at 25 °C)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. os (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display conditions can be stored in memory.
-digit anel i lemor uput s utput NAL S232 ispla lemo acku	BCD active L memory's sel- y recall by lat High-leve Low-leve Input time t specification Output m Output wi Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate y ry function p battery life MODE	ection tching s el inpu i linpu e widt ns ethod ithstar turatic n outp	put signal input terminal this selection signal at the rise o t voltage t voltage t current h ind voltage on voltage ut current	f the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage A maximum of 10 types of test of 3 years or more (at 25 °C)	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. os (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display conditions can be stored in memory.
-digit anel i lemor uput s utput NAL S232 ispla lemo acku	BCD active L memory's sel y recall by lat High-leve Low-leve Low-leve Low-leve Input time t specificatio Output m Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate y y function p battery life MODE MOMEN FAIL MO	ection tching s el inpu l inpu e widt l inpu ethod ithstar turatic n outp	pput signal input terminal this selection signal at the rise o t voltage t voltage t current h ad voltage on voltage ut current	of the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage A maximum of 10 types of test of 3 years or more (at 25 °C) A test is conducted only when the Disables cancellation of FAIL ju Starts a test only when the STOI	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. os (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display conditions can be stored in memory.
-digit anel i lemor nput s nutput NAL S232 S232 iispla Iemo acku	BCD active L memory's sel- y recall by lat High-leve Low-leve Input time t specification Output m Output wi Output wi Output wi Output sa Maximun .OG OUT + COM Accuracy C Baud rate y ry function p battery life MODE	ection tching s el inpu l inpu e widt ithstar turatic n outp	pput signal input terminal this selection signal at the rise o t voltage t voltage t current h ad voltage on voltage ut current	of the strobe signal 11 V to 15 V 0 V to 4 V -5 mA maximum 5 ms minimum Open collector output (4.5 V to 3 30 V DC Approx. 1.1 V (at 25°C) 400 mA (TOTAL) Outputs a logarithmically compr Vo = log (1 + Rx / 1MΩ) where Rx = measured resistance (1 MΩ: 0.30 V; 10 MΩ: 1.04 V; Output impedance: 1 kΩ Analog output-circuit common \pm (2 % of full scale) D-SUB 9-pin connector on the r All functions other than the POV 9600 bps / 19200 bps / 38400 bp 7-segment LED, 4-digit voltage A maximum of 10 types of test of 3 years or more (at 25 °C) A test is conducted only when th Disables cancellation of FAIL ju Starts a test only when the STOI second.	The input terminal is pulled up to +12 V using a resistor. Opening the input terminal is equivalent to inputting a high-level signal. 30 V DC) ressed voltage corresponding to the measured resistance value 2 value 100 MΩ: 2.00 V; 1000 MΩ: 3.00 V; 10000 MΩ or more: 4.00 V). ear panel (compliant with EIA-232-D) WER switch and KEY-LOCK function are remotely controllable. 95 (data: 8 bits; parity: none; stop bit: 2 bits fixed) display, 4-digit insulation resistance display, and 3-digit time display conditions can be stored in memory.

Insulation Resistance Tester


General Specifications


Environment		
Installation location	Indoors and at altitudes up to 2000 m	
Warnets	Temperature 5 °C to 35 °C	
Warranty range	Humidity 20 %rh to 80 %rh (no condensation)	
On and the annual	Temperature 0 °C to 40 °C	
Operating range	Humidity 20 %rh to 80 %rh (no condensation)	
Storage renge	Temperature -20 °C to 70 °C	
Storage range	Humidity 90 %rh or less (no condensation)	
Power requirements		
Nominal voltage range (allowable voltage range)	100 V to 240 V AC (85 V to 250 V AC)	
Power consumption at rated load	30 VA maximum	
Allowable frequency range	47 Hz to 63 Hz	
Insulation resistance	30 MΩ or more (500 V DC) [AC LINE to chassis]	
Hipot	1390 V AC for 2 seconds, 10 mA or less [AC LINE to chassis]	
Ground bond	25 A AC / 0.1 Ω or less	
Electromagnetic compatibility (EMC) *1		
Conforms to the requirements of the following directive EMC Directive 2004/108/EC EN 61326-1 (Class A) EN 55011 (Class A, Group EN 61000-3-2 EN 61000-3-3 Under following conditions 1. Used HV test leadwires TL08-TOS which is supp 2. No discharge occurs at outside of the tester. 3. Used the shielded cable which length is less than	1) blied.	
Safety *1, *2		
Conforms to the requirements of the following directiv Low Voltage Directive 2006/95/EC EN 61010-1 Class I Pollution degree 2	ve and standard.	
Dimensions (maximum)	215[8.46 inch] W × 66[2.60 inch] (85[3.35 inch]) H × 230[9.06 inch] (260[10.24 inch]) D mm	
Weight	Approx. 2 kg (Approx.4.41 lbs)	
Accessories AC power cable 1 pc. TL08-TOS high-voltage test leadwires (1.5 m) 1 set Operation Manual 1 copy		

*1: Only on models that have CE marking on the panel. Not applicable to custom order models.

*2: This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.

—External dimensional diagrams —

To evaluate the PID* effect of the PV module!

TOS7210S(SPEC80776)(IR)

R\$232C

The tester that evaluates the PID effect of the PV module precisely and efficiently.

The PID insulation tester (TOS7210S) is designed based on the insulation resistance tester (TOS7200) to carry out the evaluation of the PID (Potential Induced Degradation) effect of the PV module precisely and efficiently. Being equipped with the output ability of 2000 V and the ammeter with nA resolution as well as a polarity switching function, the TOS7210S is also applicable not only to the PID evaluation but also the evaluation of the insulators that requires a high sensitivity of measurement. The tester is equipped with the panel memory that is externally accessible and the RS232C interface is also equipped as standard that can be flexibly compatible with the automated system.

- Capable of arbitrary setting of the output voltage
- Polarity switching function
- The output is floating from the ground
- Analog output terminal
- Equipped with RS232C as standard

[PID effect]

The PID effect is a phenomenon that the amount of power generation by a cell remarkably decreases when high voltage is applied between the solar cell and the frame for long hours. It is supposed that the higher the applied voltage is and/or the higher and more humid the environment is, the further deterioration accelerates.

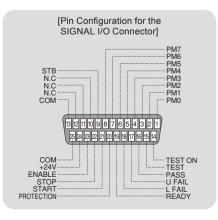
TOS7210S PID Insulation Tester

tput section Output voltage range	e	50 V to 2000 V		
	Resolution	1V		
	Accuracy	$\pm (1.5\% \text{ of setting} \pm 2 \text{ V})$		
Maximum rated outp	put	2 W (2000 V/1 mA)		
Maximum rated curr		1 mA		
Output terminals	Output type	Floating		
	Isolation voltage	±1000 Vdc (The terminal that polarity is set to positive polarity) +1000 Vdc and -3000 Vdc (The terminal that polarity is set to negative polarity)		
Ripple	2000 V/under no load	20 Vp-p or less		
	Maximum rated load	20 Vp-p or less		
Voltage regulation		1 % or less (Maximum rated load \rightarrow No load)		
Short-circuiting curr	rent	2 mA or less (Instant 200 mA or less)		
Output rise time		60 ms or less (10 % to 90 %, no load)		
Discharge function		Forced discharge at the end of test (discharge resistance: 20 kΩ)		
tmeter		0.1/4: 2400.1/		
Measurement range		0 V to 2400 V 1 V		
Resolution Accuracy		$\pm (1 \% \text{ of reading } +1 \text{ V})$		
sistance meter		$\pm (1.6 \text{ or reading } + 1.8)$		
Measurement range		0.01 MΩ to 5000 MΩ (In the range of over 100 nA to a maximum rated current of 1 mA)		
Display		\odot of this to 5000 Mis (in the range of oter 100 in R to a maximum rated entert of T mis) \Box . \Box D MΩ [R < 10.0 MΩ] \Box . \Box MΩ [10.0 MΩ]		
Display		$\square \square \square M\Omega [100, M\Omega \leq R < 100, M\Omega] \qquad \square \square \square M\Omega [100, M\Omega \leq R < 500, M\Omega] \qquad (R = measured insulation resistance)$		
Accuracy *1		\pm (10 % of reading) [100 nA < i ≤ 200 nA] \pm (5% of reading) [200nA < i ≤ 1 µA] \pm (2% of reading) [1 µA < i ≤ 1 mA]		
		(i= measured output-voltage value/measured resistance value)		
Measurement range		The current measurement range is selectable between AUTO and FIX.		
	AUTO	Automatically changes the current measurement range according to the measured current value.		
	FIX	Fixes the current measurement range based on the output voltage set value and LOWER set value (in UPPER OFF status).		
Holding function		Holds the resistance value obtained at the end of testing while a PASS judgment is being output.		
imeter				
Measurement range		0.000 μA to 1900 μA		
Display		$\Box . \Box \Box \Box \mu A [i < 10.00 \mu A] \qquad \Box \Box . \Box \Box \mu A [10.00 \mu A \le i < 100.0 \mu A]$		
		$\Box \Box \Box . \Box \mu A [100.0 \ \mu A \le i < 1000 \ \mu A] \qquad \Box \Box \Box \Box \mu A [1000 \ \mu A \le i] \qquad (i = measured current value)$		
Accuracy *2		$\pm (4\% \text{ of reading } +0.005 \mu\text{A}) [i < 10.00 \mu\text{A}] \qquad \pm (4\% \text{ of reading } +0.005 \mu\text{A}) [10.00 \mu\text{A} \le i < 100.0 \mu\text{A}]$		
		$\pm (2\% \text{ of reading } \pm 0.005 \ \mu\text{A}) \ [100.0 \ \mu\text{A} \le i < 1000 \ \mu\text{A}] \ \pm (2\% \text{ of reading}) \ [1000 \ \mu\text{A} \le i] \ (i=\text{measured current value})$		
Measurement range		The current measurement range is selectable between AUTO and FIX.		
	AUTO	Automatically changes the current measurement range according to the measured current value.		
	FIX	Fixes the current measurement range based on the output voltage set value and LOWER set value (in UPPER OFF status).		
gment function		If a second		
Judgement method/ action	UPPER FAIL Judgement	If a resistance value equal or less than the lower resistance is detected, the tester shuts off the output and returns an UPPER FAIL judgment.		
action	LOWER FAIL Judgement	If a resistance value equal or less than the lower resistance is detected, the tester shuts off the output and returns a LOWER FAIL judgment. Note that no judgment is made within the judgment wait time (WAIT TIME) after the start of the test.		
ne l		Note that no judgment is made within the judgment wait time (wATT TIME) after the start of the test.		
Setting range for the	tast duration	0.5 s to 999 s (Consecutive operation by setting TEST TIME as OFF)		
Setting range for the		0.3 s to 10 s (TEST TIME > WAIT TIME)		
Accuracy	wait time	±(100 ppm + 20 ms)		
SNAL I/O		D-SUB 25-pin connector on the rear panel		
Input	High-level input voltage	11 V to 15 V		
specifications	Low-level input voltage	0 V to 4 V All input signals are active Low controlled.		
specifications	Low-level input current	The input ferminal is pulled up to +12 V using a resistor.		
	Input time width	5 ms minimum Opening the input terminal is equivalent to inputting a high-level signal.		
Output	Output method	Open collector output (4.5 Vdc to 30 Vdc)		
specifications	Output withstand voltage	30 Vdc		
	Output saturation voltage	Approx. 1.1 V (at 25°C)		
	Maximum output current	400 mA (TOTAL)		
ALOG OUT	interimum output current	Outputs the measured resistance, measured current and voltage, and current range in DC voltage.		
Measured resistance				
		$V_0 = \log \left(I + \frac{R_x}{IM\Omega} \right)$ Rx: Resistance measurement		
		Rx: (1 MΩ: 0.3 V, 10 MΩ: 1.04 V, 100 MΩ: 2.00 V, 1000 MΩ: 3.00 V, 10000 MΩ or more: 4.00 V) Output impedance: 1 kΩ		
No. 1		Renge1: V_0 [V]= measured value [μ A]/512 Renge3: V_0 [V]= measured value [μ A]/8		
Measured current		Renge2: V_0 [V] = measured value [µA]/64 Renge4: V_0 [V] = measured value [µA]		
		Analog output-circuit common		
COM		$\pm (2\% \text{ of full scale})$		
Accuracy		D-SUB 9-pin connector on the rear panel (compliant with EIA-232-D) All functions other than the POWER switch and KEY-LOCK		
Accuracy		9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed)		
Accuracy 232C		9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start		
Accuracy 232C Baud rate MOTE		 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 		
Accuracy 232C Baud rate MOTE play		 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display 		
Accuracy 232C Baud rate MOTE play mory function		9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory		
Accuracy 232C Baud rate MOTE play	MOMENTARY	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed.		
Accuracy 232C Baud rate MOTE play mory function	FAIL MODE	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control.		
Accuracy 232C Baud rate MOTE play mory function	FAIL MODE DOUBLE ACTION	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second.		
Accuracy 232C Baud rate MOTE play mory function ST MODE	FAIL MODE	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK	FAIL MODE DOUBLE ACTION	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second.		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK vironment	FAIL MODE DOUBLE ACTION	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIX connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location	FAIL MODE DOUBLE ACTION PASS HOLD	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK Vironment Installation location Warranty range	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity	 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location Warranty range Operating range	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely start stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F)		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK vironment Installation location Warranty range Operating range Storage range	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity	 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location Warranty range Operating range Storage range ver requirements	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity Temperature/Humidity	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (-4 °F to 158 °F)		
Accuracy 32C Baud rate MOTE play mory function ST MODE YLOCK vironment Installation location Warranty range Operating range Storage range ver requirements Nominal voltage ran	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range)	 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (39 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (4 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location Warranty range Operating range Storage range ver requirements Nominal voltage ran Power consumption	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range) At rated load	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 164 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (4 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 30 VA maximum		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location Warranty range Operating range Storage range ver requirements Nomial voltage ran Power consumption Allowable frequency	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range) At rated load	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 70 °C/90 % rh or less (no condensation) (-4 °F to 158 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (-4 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 30 VA maximum 47 Hz to 63 Hz		
Accuracy 32C Baud rate MOTE play mory function ST MODE YLOCK /ironment Installation location Warranty range Operating range Storage range ver requirements Nominal voltage ran Power consumption Allowable frequency lation resistance	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range) At rated load	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (4 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 30 VA maximum 47 Hz to 63 Hz 30 MΩ or more (500 Vdc) (AC LINE to chassis)		
Accuracy 32C Baud rate MOTE play mory function ST MODE YLOCK YLOCK YLOCK Varianty range Operating range Storage range ver requirements Nominal voltage ran Power consumption Allowable frequency lation resistance ot	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range) At rated load	 9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (32 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 30 VA maximum 47 Hz to 63 Hz 30 MQ or more (500 Vdc) (AC LINE to chassis) 1500 Vac for 1 second, 10 mA or less (AC LINE to chassis), 3000 V AC for 1 second (A, B terminals to chassis) 		
Accuracy 232C Baud rate MOTE play mory function ST MODE YLOCK //ronment Installation location Warranty range Operating range Storage range ver requirements Nominal voltage ran Power consumption Allowable frequency ulation resistance vot vot	FAIL MODE DOUBLE ACTION PASS HOLD Temperature/Humidity Temperature/Humidity ge(allowable voltage range) At rated load	9600 bps/19200 bps/38400 bps (data: 8 bits; parity: none; stop bit: 2 bits fixed) 6-pin mini-DIN connector on the front panel. The optional remote controller RC01-TOS or RC02-TOS is connected to control remotely star stopping of a test (note that a DIN-mini DIN adapter is required). 7-segment LED, 4-digit voltage display, 4-digit insulation resistance display, 4-digit current display, and 3-digit time display A maximum of 10 types of test conditions can be stored in memory A test is conducted only when the START switch is pressed. Disables cancellation of FAIL judgment using a stop signal via remote control. Starts a test only when the STOP switch is pressed and the START switch is pressed within approximately a half-second. Allows the time of holding PASS judgment to be set to 0.2 s or HOLD Places the tester in a state in which no keystroke other than the START/STOP switch is accepted Indoors and at altitudes up to 2000 m 15 °C to 30 °C/20 % rh to 80 % rh (no condensation) (59 °F to 86 °F) 0 °C to 40 °C/20 % rh to 80 % rh (no condensation) (32 °F to 104 °F) -20 °C to 70 °C/90 % rh or less (no condensation) (4 °F to 158 °F) 100 Vac to 240 Vac (85 Vac to 250 Vac) 30 VA maximum 47 Hz to 63 Hz 30 MΩ or more (500 Vdc) (AC LINE to chassis)		

*1: Humidity: 20 %rh to 70 %rh (no condensation). No bends in the test leads. *2: Humidity: 20 %rh to 80 %rh (no condensation). No bends in the test leads. Humidity 20 %rh to 70 %rh when either of terminal A or terminal B is grounded (no condensation). No bends in the test leads.

Ground Bond tester supporting standard compliance tests up to 60A

TOS6210



Test up to 60 A is possible!

While inheriting the basic performance and functions of its predecessor (TOS6200), such as a constant current driving system that provides current waveforms with little skew and high measurement accuracy, the TOS6210 tester extends the maximum test current from 30 A to 60 A, which is demanded by the new standard. In addition, the tester also lets you judge the acceptability of the device under test based on the drop in voltage, as required in the standard. What's more, you can preset test conditions of up to 20 different types of safety standards, such as those for information technology equipment, home appliances, medical devices, and measuring instruments, in the memory on the main unit's panel.

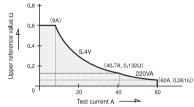
A simple memory call operation allows you to set up a protective earth or protective bonding continuity test as stipulated in UL60950-1 and other relevant specifications including IEC and JIS standards. The tester also features a set of functions that meet the specific needs of testing personnel, such as an offset cancellation function and a memo function that allows you to input calibration dates, production numbers, and other test-related information and read the input information later via the GPIB or RS232C interface.

- Test current value: 6 A to 60 A AC / Resistance value: 0.001 Ω to 0.600 Ω
- Voltage drop-based judgment function
- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS232C interfaces
- Equipped with standard test lead (TL12-TOS)

Ground Bond Tester

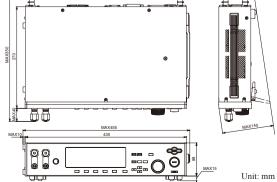
Output block Current setting ra	nge (*1)	6.0 to 62.0 A AC (With respect to resistance resulting in output powe	
	5-(1)	of the maximum rated Output or less and an output terminal voltage	
		of 5.4 V or less)	
Resolution		0.1A	
Accuracy		\pm (1% of setting + 0.4A)	
Maximum rated o	output	220 VA (at the output terminals)	
Distortion factor		2% or less (with respect to 0.1 Ω pure resistance load of 20 A or greater	
Frequency		50/60 Hz, sine wave (selectable)	
Accuracy		±200ppm	
Open terminal vo	ltage	6 Vrms or less	
Output method		PWM switching method	
Output ammeter			
Measurement ran	ge	0.0 to 66.0 AAC	
Resolution		0.1A	
Accuracy		\pm (1% of reading + 0.4A)	
Response		Mean value response/rms value display (response time: 200 ms)	
Holding function		The current measured at the end of test is held during the PASS or FAIL inteva	
Output voltmeter			
Measurement ran		0.00 to 6.00 V AC	
Resolution	8-	0.01V	
Offset cancel fun	ction	0.00 to 5.40 V (Offset ON/OFF function provided)	
Accuracy		$\pm (1\% \text{ of reading} \pm 0.02\text{V})$	
Response		Mean value response/rms value display (response time: 200 ms)	
Holding function		The voltage measured at the end of test is held during the PASS or FAIL inteva	
Ohmmeter (*2)			
Measurement ran	ge	0.001 to 0.600 Ω	
Resolution	0-	0.001 Ω	
Offset cancel fun	ction	$0.001 \Omega_2$ 0.000 to 0.600 Ω (Offset ON/OFF function provided)	
Accuracy	ction	$\pm (2\% \text{ of reading} \pm 0.003 \Omega)$	
Holding function			
Pass/fail judgeme		The resistance measured at the end of test is held during the PASS or FAIL interve	
Resistance value-	(
judgement	based	Window comparator system •If a resistance value equal to or greater than the upper reference	
Judgement		value is detected, a FAIL determination is returned. •If a resistance value equal to or less than the lower reference value i detected, a FAIL determination is returned. •If a resistance value has been judged as FAIL, the tester shuts off th	
		output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the	
		output and generates a PASS signal.	
Setting range	for the upper	0.001 to 0.600 Ω	
reference valu			
Setting range	for the lower	0.001 to 0.600 Ω	
reference valu	e (LOWER)		
Resolution		0.001 Ω	
Judgement ac	curacy	± (2% of UPPER + 0.003 Ω)	
Sampled voltage	value-based	Window comparator system	
judgement		•If a voltage value equal to or greater than the upper reference value	
		is detected, a FAIL determination is returned.	
		•If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned.	
		•If a voltage value has been judged as FAIL, the tester shuts off the	
		output and generates a FAIL signal.	
		•If the set time elapses without abnormalities, the tester shuts off the	
		output and generates a PASS signal.	
Setting range f		0.01 to 5.40 V	
reference value	,,,,,		
Setting range		0.01 to 5.40 V	
reference valu	ic (LOWER)	0.01 M	
Resolution		0.01 V	
	curacy	± (2% of UPPER + 0.05 V)	
Judgement ac		Calibration is performed with the rms value of the sine wave, using a	
Judgement ac			
Judgement ac Calibration	DASS	pure resistance load.	
Judgement ac Calibration	PASS	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged	
Judgement ac Calibration		pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD	
Judgement ac Calibration	PASS UPPER FAIL	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged	
Judgement ac	UPPER FAIL	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is it continuously when the PASS holding time is set to HOLE Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.	
Judgement ac	UPPER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the	
Judgement acc Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is lit continuously when the PASS holding time is set to HOLE Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the	
Judgement acc Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is lit continuously when the PASS holding time is set to HOLL Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. +The buzzer sounds for the pass holding time has been set if the measured value has been judged a PASS.	
Judgement acc Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. -The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. -The buzzer sounds continuously under the following condition:	
Judgement acc Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLL Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. - The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. - The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS	
Judgement acc Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judge as PASS. It is lit continuously when the PASS holding time is set to HOLL Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. - The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. - The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD.	
Judgement ac Calibration	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLE Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS	
Judgement acc Calibration LED	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. - The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. - The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as UPPER FAIL. - The buzzer volume for FAIL or PASS judgment are adjustable.	
Judgement acc Calibration LED	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. *The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. *The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as LOPER FAIL. The measured value has been judged as LOPER FAIL. Note that it cannot be adjusted individually since setting is shared	
Judgement acc Calibration LED Buzzer	UPPER FAIL LOWER	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. - The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. - The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as UPPER FAIL. - The buzzer volume for FAIL or PASS judgment are adjustable.	
Judgement acc Calibration LED	UPPER FAIL LOWER FAIL	pure resistance load. Lights for approximately 0.2 sec when the measured value has been judged as PASS. It is lit continuously when the PASS holding time is set to HOLD Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL. *The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS. *The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as LOPER FAIL. The measured value has been judged as LOPER FAIL. Note that it cannot be adjusted individually since setting is shared	

Operating environ	nment	Indoor use, Overvoltage Category II			
Warranty range	Temperature	5° to 35°C			
warranty range	Humidity	20 %rh to 80 %rh (non condensing)			
Operating range	Temperature				
Operating range	Humidity	20 %rh to 80 %rh (non condensing)			
Storage range	Temperature	-20° to 70°C			
Storage range	Humidity	90 %rh or less (non condensing)			
Altitude	Trainfaity	Up to 2000 m			
Power requireme	nt	0p to 2000 m			
Allowable voltag		85 to 250 V AC			
Power consumption	At no load (READY)	60 VA or less			
1	At rated load	420 VA max.			
Allowable freque	ency range	47 Hz to 63 Hz			
Insulation resista		30 MΩ min. (500 V DC), between AC line and chassis			
Hipot	-	1390 V AC (2 seconds), between AC line and chassis			
Ground bond		25 A AC/0.1 Ω max.			
Electromagnetic	compatibility (EMC) (*5,6)			
EMC Directive 2 Under following	014/30/EU, EN conditions 1	f the following directive and standard. \$61326, EN61000-3-2, EN61000-3-3 . Used test leadwire (TL12-TOS) which is supplied. h length is less than three meters when the SIGNAL I/O is used.			
Safety (*5)					
		f the following directive and standard. /EU, EN61010-1, Class I, Pollution degree 2			
Physical dimensions(maxi	mum)	430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch] H × 270[10.63 inch] (350[13.78 inch]) D mm			
Weight		Approx. 11 kg(Approx.24.25 lbs)			
Accessories					
		eadwire TL12-TOS: 1 set, Short bar: 2 pieces (These are inserted IPLING terminals.), AC power fuse: 2 pieces (2, including one spare			


*1: Time limitation with respect to output. The heat radiation capacity at the output block of the tester is designed to be one-third of the rated output, accounting for size, weight, cost, and other factors. Always use the tester within the limitation values given below. Use of the tester beyond these limits will range to the rester of the output block to rise excessively, potentially tripping the internal protection circuit. In this case, suspend testing for approximately 30 minutes, then press the STOP switch. When temperatures fall to normal levels, the tester will revert to ready status.

Output time limitation					
Ambient temperature t (°C)	Test current I (A)	Pause time	Maximum allowable continuous test time		
$t \le 40^{\circ}$	$40 < I \le 60$	Equal to or greater than the test time	≤ 10 minutes		
	$20 < I \le 40$	Equal to or greater than the test time	≤ 30 minutes		
	$I \le 20$	Not required	Continuous output possible		

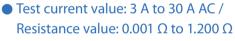
*2: About ohmmeter's response time. A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies with the response times of the voltmeter and ammeter.


*3: Resistance value-based and sampled voltage value-based judgments cannot be simultaneously conducted.
*4: Limited by the maximum rated output and the output terminal voltage. The tester can be used within the range shown below.

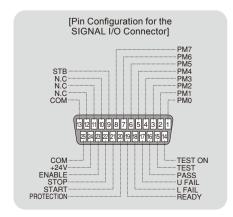
Allowable range in which to determine the test current value and upper reference value

*5: Not applicable to custom order models.*6: Only on models that have CE marking on the panel.

Pursuing to maximize an easy operation, stylish design of Ground Bond Tester


TOS6200A

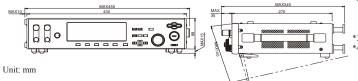
GPIB RS232C DRIVERS CE


Adopting the constant current method to apply automated testing system Perfect feature for the Production line which requires re-

duced tact time

The TOS6200A is designed to perform the ground bond tests required for class-I devices by safety standards such as IEC, EN, VDE, BS, UL, JIS, and the Electrical Appliance and Material Safety Low (Japan). Equipped with a new high-efficiency power supply, it is compact and lightweight, about half the size and weight of our conventional products, while achieving a large output of 150 VA. Use of the constant current method eliminates the need to reset test currents even in the face of fluctuating resistance values for the device being tested. The test duration can also be set from 0.3 s, making the tester suitable for production line testing, which requires reduced cycle time. This tester is also designed for ease of use, featuring a large, easy-to-read display, memory capacity for storage of 100 types of test conditions, and incorporation of test conditions into programs to enable automatic testing. The standard equipped GPIB and RS232C interfaces allow the user to use PCs or other devices to control test conditions such as test current, resistance value for judgement, and test duration, and enables read-back of measured values and test results.

- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS232C interfaces
- Equipped with standard test lead (TL11-TOS)



TOS6200A

Ground Bond Tester

Output b	setting range (*1)	3.0 Aac to 31.0 Aac	
Current	setting range (*1)	(With respect to resistance resulting in output power of the maximum rated Output or less and an output terminal voltage of 5.4 V or less)	
	Resolution	0.1 A	
	Accuracy	\pm (1% of setting + 0.2 A)	
Maximum rated output		150 VA (at the output terminals)	
Distortion factor		2% or less (with respect to 0.1 Ω pure resistance load of 10 A or greater)	
Frequen	су	50/60 Hz, sine wave (selectable)	
Accuracy		±200 ppm	
Open terminal voltage		6 Vrms or less	
Output r	nethod	PWM switching method	
Output a			
Measure	ment range	0.0 Aac to 33.0 Aac	
Resoluti	on	0.1 A	
Accurac	у	\pm (1% of reading + 0.2 A)	
Respons		Mean value response/rms value display (response time: 200 ms)	
Holding	function	The current measured at the end of test is held during the PASS or FAIL inteval	
	oltmeter		
	ment range	0.00 Vac to 6.00 Vac	
Resoluti	on	0.01 V	
Accurac	у	\pm (1% of reading + 0.02 V)	
Respons		Mean value response/rms value display (response time: 200 ms	
Holding	function	The voltage measured at the end of test is held during the PASS or FAIL inteval	
Ohmmet	ter (*2)		
Measure	ment range	0.001 Ω to 1.200 Ω	
Resoluti		0.001 Ω	
Offset ca	ancel function	0.000Ω to 1.200Ω (Offset ON/OFF function provided	
Accurac	у	$\pm (2\% \text{ of reading} + 0.003 \Omega)$	
Holding	function	The resistance measured at the end of test is held during the PASS interval	
Pass/fail	judgement function		
Resistance value-based judgement		Window comparator system •If a resistance value equal to or greater than the upper reference value is detected, a FAILdetermination is returned •If a resistance value equal to or less than the lower reference value is detected, a FAIL determination is returned •If a resistance value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal. •If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal.	
Setting ravial value (U	ange for the upper rerence PPER)	0.001 Ω to 1.200 Ω	
Setting range for the upper rerence value (LOWER)		0.001 Ω to 1.200 Ω	
Resolution		0.001 Ω	
Judgement accuracy		$\pm (2\% \text{ of UPPER} + 0.003 \Omega)$	
Calibrati	ion	Calibration is performed with the rms value of the sine wave, using a pure resistance load.	
	PASS	Lights for approximately 0.2 sec when the measured value has been judged as PASS.It is lit continuously when the PASS holding time is set to HOLD.	
		Lights if a register as value agual to an greater then	
LED	UPPER FAIL	Lights if a resistance value equal to or greater than the upper reference value is detected and judged FAIL.	

—External dimensional diagrams —

Buzzer Interpretation of the pass holding time has been set if the measured value has been judged as PASS - The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as LOWER FAILThe buzzer volume for FAIL or PASS judgment are adjustable. Note that it cannot be adjusted individually since setting is shared with the setting for PASS. Firme Accuracy + (100ppm of setting + 20ms) Environment Operating environment Indoor use, Overvoltage Category II Warranty range Temperature : 5°C to 35°C Humidity : 20 %rh to 80 %rh (non condensing) Operating range Temperature : 0°C to 40°C Humidity : 20 %rh to 80 %rh (non condensing) Operating range Temperature : 0°C to 70°C Humidity : 20 %rh to 80 %rh (non condensing) Altitude Up to 2000 m Power requirement Alto load (READY) 60 VA or less Withstanding voltage Tage 85 Vac to 250 Vac Power Alto load (READY) 60 VA or less Withstanding voltage Tage 1390 Vac (2 seconds), between AC line and chassis Withstanding voltage Diduction Line Accuracy 25 Ac2 (0.1 Q max. Safety (*3) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-11 (Class A, Group 1), EN 61000-3-2, EN 61000-3 Under following Gonditions 36 (16.93 inch] (455[17.91 inch]) M× 88[3.46 inch] (140[5.51 inch]) H× 270[10.63 inch] (455[17.91 inch]) M× 88[3.46 inch] (140[5.51 inch]) H× 270[10.63 inch] (455[17.91 inch]) M× 88[3.46 inch] (140[5.51 inch]) H× 270[10.63 inch] (455[17.91 inch]) M× 88[3.46 inch] (140[5.51 inch]) H× 270[10.63 inch] (455[17.91 inch]) M× 88[3.46 inch] (140[5.51 inch]) H× 270[10.63 inch] (455[17.91 inch])			The home counds for the near holding time 1 and							
TimeAccuracy \pm (100ppm of setting + 20ms)EnvironmentIndoor use, Overvoltage Category IIWarranty rangeTemperature : 5°C to 35°CHumidity : 20 %rh to 80 %rh (non condensing)Operating rangeTemperature : 0°C to 40°CHumidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : -20°C to 70°CHumidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirementAllowable voltage range85 Vac to 250 VacPower orguing rangeAt no load (READY)60 VA or lessconsum- ptionAt no load (READY)60 VA or lessConsum- ption resistance30 MQ min. (500 Vdc), between AC line and chassis8afety (*3) Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.Low Voltage Colla/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1),EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL IO is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAc power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted		Setting range	•The buzzer sounds continuously under the following condition: The measured value has been judged as PASS when the PASS holding time is set to HOLD. The measured value has been judged as UPPER FAIL. The measured value has been judged as LOWER FAIL. •The buzzer volume for FAIL or PASS judgment are adjustable. Note that it cannot be adjusted individually since setting is shared with the setting for PASS.							
Operating environmentIndoor use, Overvoltage Category IIWarranty rangeTemperature : $5^{\circ}C$ to $35^{\circ}C$ Humidity : 20 %rh to 80 %rh (non condensing)Operating rangeTemperature : $0^{\circ}C$ to $40^{\circ}C$ Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : $-20^{\circ}C$ to $70^{\circ}C$ Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirement410 vable voltage rangeAllowable voltage range85 Vac to 250 VacPower requirement41 no load (READY)Allowable frequency range47 Hz to 63 HzInsulation resistance30 M\Omega min. (500 Vdc), between AC line and chassisAllowable frequency range1390 Vac (2 seconds), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61101-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightApprox. 9 kg (Approx.19.84 lbs)Accessories <td>Time</td> <td></td> <td></td>	Time									
Operating environmentIndoor use, Overvoltage Category IIWarranty rangeTemperature : $5^{\circ}C$ to $35^{\circ}C$ Humidity : 20 %rh to 80 %rh (non condensing)Operating rangeTemperature : $0^{\circ}C$ to $40^{\circ}C$ Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : $-20^{\circ}C$ to $70^{\circ}C$ Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirement410 vable voltage rangeAllowable voltage range85 Vac to 250 VacPower requirement41 no load (READY)Allowable frequency range47 Hz to 63 HzInsulation resistance30 M\Omega min. (500 Vdc), between AC line and chassisAllowable frequency range1390 Vac (2 seconds), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61101-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), 	Environ	ment								
Temperature : 5°C to 35°C Humidity : 20 %rh to 80 %rh (non condensing)Operating rangeTemperature : 0°C to 40°C Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : 0°C to 70°C Humidity : 90 %rh or less (non condensing)AltitudeUp 0000 mPower requirement41 no load (READY)Allowable voltage range85 Vac to 250 VacPower requirement41 no load (READY)Altowable frequency range47 Hz to 63 HzInsulation resistance30 M\Omega min. (500 Vdc), between AC line and chassisSafety (*3)Conforms to the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU, EN 61101-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard. EM 6100-3-2, EN 61000-3-3 Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightApprox. 9 kg (Approx. 9.84 inch]) D mmWeightApprox. 9 kg (Approx.19.84 ilbs)AccessoriesApprox. 9 kg (Approx.19.84 ilbs)Accessories2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)			Indoor use, Overvoltage Category II							
Operating rangeTemperature : 0° C to 40° C Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : -20° C to 70° C Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirementAltivable voltage rangeAllowable voltage range85 Vac to 250 VacPower consum- prionAt no load (READY)At no load (READY)60 VA or lessConsum- prionAt rated loadAllowable frequency range47 Hz to 63 HzInsulation resistance30 MΩ min. (500 Vdc), between AC line and chassisBarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximun)430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightAccessoriesAC power cordI pieceTest leadwire TL11-TOSI setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminal		0								
Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : -20°C to 70°C Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirementAltovable voltage range85 Vac to 250 VacAllowable voltage range85 Vac to 250 VacPower requirement60 VA or lessAllowable frequency range47 Hz to 63 HzInsulation resistance30 MΩ min. (500 Vdc), between AC line and chassisBarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1),EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)			1							
Humidity : 20 %rh to 80 %rh (non condensing)Storage rangeTemperature : -20°C to 70°C Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirementAltovable voltage range85 Vac to 250 VacAllowable voltage range85 Vac to 250 VacPower requirement60 VA or lessAllowable frequency range47 Hz to 63 HzInsulation resistance30 MΩ min. (500 Vdc), between AC line and chassisBarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1),EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)	Operatir	ig range	Temperature : 0°C to 40°C							
Humidity : 90 %rh or less (non condensing)AltitudeUp to 2000 mPower requirementAllowable voltage range85 Vac to 250 VacPower consumAt no load (READY)60 VA or lessAnnoAt rated load280 VA max.Allowable frequency range47 Hz to 63 HzInsulation resistance30 MΩ min. (500 Vdc), between AC line and chassisBittistanding voltage1390 Vac (2 seconds), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mmWeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesIAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder) <td>•</td> <td></td> <td>1</td>	•		1							
AltitudeUp to 2000 mPower requirementAllowable voltage range85 Vac to 250 VacPower consumAt no load (READY)60 VA or lessAllowable frequency range47 Hz to 63 HzInsulation resistance30 M Ω min. (500 Vdc), between AC line and chassisBislation resistance30 M Ω min. (500 Vdc), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)	Storage	range	Temperature : -20°C to 70°C							
Power requirementAllowable voltage range85 Vac to 250 VacPower consumAt no load (READY)60 VA or lessAt no load (READY)60 VA or lessAllowable frequency range47 Hz to 63 HzInsulation resistance30 MΩ min. (500 Vdc), between AC line and chassisBislation resistance30 MΩ min. (500 Vdc), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cordAC power fuse2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)	e	C	Humidity : 90 %rh or less (non condensing)							
Allowable voltage range85 Vac to 250 VacPower consumAt no load (READY)60 VA or lessAt na load (READY)60 VA or lessAllowable frequency range47 Hz to 63 HzInsulation resistance30 M Ω min. (500 Vdc), between AC line and chassisWithstanding voltage1390 Vac (2 seconds), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cordAC power fuse2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)	Altitude	•	Up to 2000 m							
$\begin{array}{ c c c c c c } \hline Power \\ consumer \\ \hline Power \\ consumer \\ \hline At rated load (READY) & 60 VA or less \\ \hline At rated load & 280 VA max. \\ \hline At rated load & 280 VA max. \\ \hline Allowable frequency range & 47 Hz to 63 Hz \\ \hline Insulation resistance & 30 M\Omega min. (500 Vdc), between AC line and chassis \\ \hline Withstanding voltage & 1390 Vac (2 seconds), between AC line and chassis \\ \hline Earth continuity & 25 Aac/ 0.1 \Omega max. \\ \hline Safety (*3) Conforms to the requirements of the following directive and standard. \\ \hline Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2) \\ \hline Electromagnetic compatibility (EMC) (*3,4) \\ \hline Conforms to the requirements of the following directive and standard. \\ EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 \\ \hline Under following conditions \\ 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. \\ 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. \\ \hline Physical dimensions (maximum) \\ \hline Weight & Approx. 9 kg (Approx.19.84 lbs) \\ \hline Accessories \\ \hline AC power cord & 1 piece \\ \hline Test leadwire TL11-TOS & 1 set \\ \hline Short bar & 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) \\ \hline AC power fuse & 2 pieces (2, including one spare in the fuse holder) \\ \hline \end{array}$	Power r	equirement								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Allowal	ole voltage range	85 Vac to 250 Vac							
ption At rated load 280 VA max. Allowable frequency range 47 Hz to 63 Hz Insulation resistance 30 MΩ min. (500 Vdc), between AC line and chassis Withstanding voltage 1390 Vac (2 seconds), between AC line and chassis Earth continuity 25 Aac/ 0.1 Ω max. Safety (*3) Conforms to the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2) Electromagnetic compatibility (EMC) (*3,4) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories 1 AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) <td>Power</td> <td>At no load (READY)</td> <td>60 VA or less</td>	Power	At no load (READY)	60 VA or less							
Insulation resistance 30 MΩ min. (500 Vdc), between AC line and chassisWithstanding voltage1390 Vac (2 seconds), between AC line and chassisEarth continuity 25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1),EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)		At rated load	280 VA max.							
Withstanding voltage1390 Vac (2 seconds), between AC line and chassisEarth continuity25 Aac/ 0.1 Ω max.Safety (*3)Conforms to the requirements of the following directive and standard.Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2)Electromagnetic compatibility (EMC) (*3,4)Conforms to the requirements of the following directive and standard.EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3Under following conditions1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied.2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.Physical dimensions (maximum)WeightApprox. 9 kg (Approx.19.84 lbs)AccessoriesAC power cord1 pieceTest leadwire TL11-TOS1 setShort bar2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)AC power fuse2 pieces (2, including one spare in the fuse holder)	Allowat	ole frequency range	47 Hz to 63 Hz							
Earth continuity 25 Aac/ 0.1 Ω max. Safety (*3) Conforms to the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2) Electromagnetic compatibility (EMC) (*3,4) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories 1 piece AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)	Insulation	on resistance								
Safety (*3) Conforms to the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2) Electromagnetic compatibility (EMC) (*3,4) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories 1 piece AC power cord 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)	-									
Low Voltage Directive 2014/35/EU, EN 61010-1 (Class I, Pollution degree 2) Electromagnetic compatibility (EMC) (*3,4) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories 1 piece AC power cord 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)		,	1							
Electromagnetic compatibility (EMC) (*3,4) Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories 1 piece AC power cord 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)										
Conforms to the requirements of the following directive and standard. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)										
EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN 61000-3-2, EN 61000-3-3 Under following conditions 1. Used test leadwire (TL11-TOS for TOS6200A, TL12-TOS for TOS6210) which is supplied. 2. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used. Physical dimensions (maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm Weight Approx. 9 kg (Approx.19.84 lbs) Accessories AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)										
Weight Approx. 9 kg (Approx.19.84 lbs) Accessories Accessories AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)	EMC D EN 610 Under f 1. Use whi 2. Use I/O	irective 2014/30/EU, EN 6 00-3-2, EN 61000-3-3 ollowing conditions d test leadwire (TL11-TOS ich is supplied. ed the shielded cable which is used.	1326-1 (Class A), EN 55011 (Class A, Group 1), 5 for TOS6200A, TL12-TOS for TOS6210)							
Accessories AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)	Physica	l dimensions (maximum)	88[3.46 inch] (140[5.51 inch]) H ×							
AC power cord 1 piece Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)	Weight		Approx. 9 kg (Approx.19.84 lbs)							
Test leadwire TL11-TOS 1 set Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)										
Short bar 2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)			-							
and SAMPLING terminals.) AC power fuse 2 pieces (2, including one spare in the fuse holder)										
	Short ba	ir	and SAMPLING terminals.)							
Operation manual 1 copy	AC pow	ver fuse	2 pieces (2, including one spare in the fuse holder)							
	Operation	on manual	1 сору							

*1: Time limitation with respect to output

The heat radiation capacity at the output block of the tester is designed to be one-third of the rated output, accounting for size, weight, cost, and other factors. Always use the tester within the limitation values given below. Use of the tester beyond these limits will cause the temperature of the output block to rise excessively, potentially tripping the internal protection circuit. In this case, suspend testing for approximately 30 minutes, then press the STOP switch. When temperatures fall to normal levels, the tester will revert to ready status.

		Output time limitation	
Ambient temperature t (°C)	Test current I (A)	Pause time	Maximum allowable continuous test time
t < 40°	$15 < I \leq 30$	Equal to or greater than the test time	≤ 30 minutes
t ≤ 40°	$I \leq 15$	Not required	Continuous output possible

*2: About ohmmeter's response time

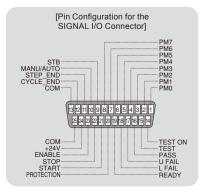
A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies with the response times of the voltmeter and ammeter.

*3: Not applicable to custom order models.

*4: Only on models that have CE marking on the panel.

Leakage Current Tester

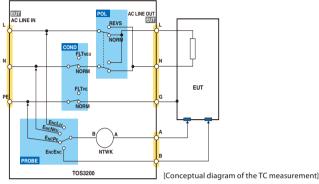
Supports touch current and protective conductor current (earth leakage current) tests


TOS3200

A leakage current tester has now been added to the TOS Series... Conforms to international standard IEC 60990 ("Methods of measurement of touch current and protective conductor current").

The Leakage Current Tester TOS3200 is designed to test for leakage current (Touch Current and Protective Conductor Current) of general electrical apparatuses, excluding those used for medical purposes. With this tester, you can conduct tests conforming to various standards including IEC, UL, JIS and Electrical Appliance and Material Safety Law (Japan). You can set test conditions through simple operations on the panel because this tester holds in its memory the 51 types of test conditions for IT-related electrical equipment, electrical appliances, audio & visual equipment, lighting fixtures, power tools, and measuring and control instruments, accordingly with the standards of IEC/JIS and Electrical Appliance and Material Safety Law.

- Capable of measuring leakage current in three modes
- Eight built-in measurement circuit networks
- Up to 30 mA for RMS measurement
- Easy-to-understand operation
- Enables the continuous execution of tests
- Capable of saving test results
- 51 types of standard test conditions are preset
- Lets you manage the calibration time limit
- USB interface provided as standard



Leakage Current Tester

Capable of measuring leakage current in three modes

Touch current (TC) operating mode*

Enables you to measure the touch current flowing between the enclosure (accessible portion) of the electrical equipment under test (EUT) and the power line incorporating the earth wire, via Measuring Devices. For Measuring Devices, eight measurement circuit networks (NTWKs) conforming to the applicable standards are provided as standard. The switching of the polarities of the power line to the EUT, as well as single-fault conditions, are automatically set with relays inside the tester.

Protective conductor current (PCC) operating mode*

Enables you to measure the current flowing through the protective conductor (earth wire) by connecting the power plug (NEMA5-15 or an equivalent) of an item of 100 V electrical equipment to the socket on the front panel. A multi-outlet is available as an option (sold separately) to accommodate the different plugs used around the world.

Meter (METER) operating mode

In the same way as an ordinary multimeter, enables you to measure voltage and current using measurement terminals A and B on the front panel. For voltage measurement, it offers a "safety extra low voltage" (SELV) detection function; for current measurement, it offers a measurement function using measurement circuit networks (NTWKs).

*TC=Touch Current PCC=Protective Conductor Current

Easy-to-understand operation

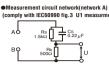
Simple operation is possible thanks to the intuitively understandable test condition menu and the function keys/rotary knobs.

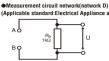
[Setting screen for touch current (TC) measurement]

Enables the continuous execution of tests

Allows you to automatically conduct TC and PCC tests as a single sequence program by setting their test conditions as up to 100 independent tests (steps). You can set up to 100 sequence programs, with up to 500 steps in total. To support automation test, measurement point (probe setting) can be switched over without turning off EUT power line.

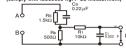
AUTO 1/2 PRG 00:UNTITLED	EDIT	AUTO 2/2 PRG 01:TEST-1	EDIT
NTWK:A MODE:RMS ABORT:OFF	LOWER: 30µA	NTWINE MODERMS RANGE AUTO	ABORT OFF
00 TC+EncPePNRM+NORM 1s 101 TC+EncPePNRM+NORM 1s	UPPER : 30.0mA WAIT : OFF	APTRS	Cs: 0.22 uF
END	TIMER : 1s		2 C1: 0.022 μF
		B	1
INS LOWER UPPER WA	T TIMER	TITLE NTWK MODE RAN	GE ABORT

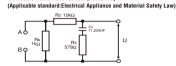

[Setting screen for auto tests]


Up to 30 mA for RMS measurement

Capable of measuring 30 μ A to 30 mA for DC/RMS measurement and 50 μ A to 90 mA for PEAK measurement, both in three ranges. Two range switching functions are provided, namely, a fixed range function (FIX) and auto range function (AUTO), which conform to the current to be measured.For RMS measurement, the "true root-mean-square value" is achieved.

Eight built-in measurement circuit networks


It offers built-in eight measurement circuit networks for measuring the touch current of general electrical equipment.

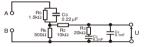


ond Material Safety Law)

 Measurement circuit network(network B) (comply with IEC60990 fig.4 U2 measurment)

t circuit network (ne

ork E)


Measurement circuit network(network B1)
 (comply with IEC60990 fig.4 U1 measurment)

Rs Cs 1.5kΩ

٩٩

 Measurement circuit network(network C) (comply with IEC60990 fig.5 U3 measurment)

(Applicable standard:IEC60745 etc.)

Capable of saving test results

For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

51 types of standard test conditions are preset

The memory in the main unit is pre-written with 51 types of test conditions for general electrical equipment, which conform to IEC 60990 and the standards listed below. You can set the standard test conditions merely by calling them.

[Standards covered by the memory]							
Standard No.	Applicable electrical equipment						
IEC60950	Information technology equipment						
IEC60335	Household and similar electrical appliances						
IEC60065	Audio, video and similar electronic apparatus						
IEC60745	Hand-held motor-operated electric tools						
IEC60598	Luminaires						
IEC61010	Electrical equipment for measurement, control, and laboratory use						
Electrical Appliance and Material Safety Law	Electrical appliances						
IEC61029	Transportable motor-operated electric tools						

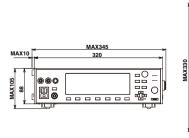
Lets you manage the calibration time limit

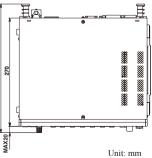
For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

USB interface provided as standard

In addition to the SIGNAL I/O, GPIB, and RS232C interfaces, a USB interface is also provided as standard.

Range of other functions


- "MAX function," which retains the largest current measured.
- "CONV function," which converts the measured current value into the corresponding value for the preset power voltage.
- "SELV function," which causes the DANGER lamp to turn ON if a preset safety extra low voltage (SELV) is exceeded in meter measurement mode.
- "CHECK function," which performs self-analysis of the measurement circuit networks.


Leakage Current Tester

			2 trmes namely touch aurrent (TC)							
Measurem	ent item		3 types, namely, touch current (TC) measurement, protective conductor current (PCC) measurement, and METER							
	TC		Measure the voltage drop across the reference resistor, using a measurement circuit network (NTWK), and then calculate the current							
Measurement circuit network (NTWK) Network c Current m Measurement Range swii Measured	PCC		Measure the voltage drop across the reference resistor connected to the protective earth wire, and then calculate the current.							
	METER		Measure the voltage and current using the measurement termina							
Measurem	ent mode		DC/RMS/PEAK (RMS being the true root-mean-square value)							
	Network A		Basic measurement element: $(1.5 \text{ k}\Omega//0.22 \mu\text{F})$ + 500 Ω							
	Network B/B1		Basic measurement element: $(1.5 \text{ k}\Omega//0.22 \mu\text{F})$ + 500 $\Omega//(10 \text{ kW} + 0.022 \mu\text{F})$							
circuit	Network C		Basic measurement element: $(1.5 \text{ k}\Omega / / 0.22 \text{ μF}) + 500 \Omega / / (10 \text{ k}\Omega + (20 \text{ k}\Omega + 6.2 \text{ nF}) / / 9.1 \text{ nF})$							
	Network D		Basic measurement element: 1 kΩ							
	Network E		Basic measurement element: $1 \text{ k}\Omega/(10 \text{ k}\Omega + 11.225 \text{ nF} + 579 \Omega)$							
	Network F		Basic measurement element: 1.5 kΩ//0.15 μF							
	Network G		Basic measurement element: 2 kΩ							
Network c	onstant tolerance		Resistance: ±0.1%, capacitor 0.15 µF: ±2%, other: ±1%							
Current m	easurement section	n								
	Range 1		DC/RMS: 30 µA to 600 µA, PEAK: 50 µA to 850 µA (*3)							
	Range 2		DC/RMS: 125 µA to 6.00 mA, PEAK: 175 µA to 8.50 mA (*3)							
range	Range 3		DC/RMS: 1.25 mA to 30.0 mA, PEAK: 1.75 mA to 90.0 mA (*3							
Range swi			AUTO/FIX							
Measured current (i) display/resolution			$i < 1mA$: $\Box\Box\Box \mu A/1 \mu A$, $1 mA \le i < 10 mA$: $\Box.\Box\Box mA/0.01 mA$							
			$10 \text{ mA} \leq i < 100 \text{ mA}$: $\Box\Box,\Box$ mA/0.1 mA							
		DC	±(5.0% of rdng + 20 μA)							
		RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 8 \mu\text{A})$							
	Range 1		$10 \text{ kHz} < f \le 1 \text{ MHz}: \pm (5.0\% \text{ of rdng} + 10 \mu\text{A})$							
		PEAK	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (5.0\% \text{ of rdng} + 10 \mu\text{A})$							
		DC	$\pm (5.0\% \text{ of rdng} + 50 \ \mu\text{A})$							
		RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 20 \mu\text{A})$							
	B 2	KIVI3								
Measurement accuracy(*5)	Range 2	DEAK	$10 \text{ kHz} < f \le 1 \text{ MHz}: \pm (5.0\% \text{ of rdng} + 20 \ \mu\text{A})$							
accuracy(5)		PEAK	$\frac{15 \text{ Hz} \le f \le 1 \text{ kHz:} \pm (2.0\% \text{ of rdng} + 50 \mu\text{A})}{11 \text{ Hz} \le f \le 10 \text{ Hz} \pm (5.0\% \mu\text{A}) + 50 \mu\text{A})}$							
			$1 \text{ kHz} < f \le 10 \text{ kHz}: \pm (5.0\% \text{ of rdng} + 50 \mu\text{A})$							
		DC	±(5.0% of rdng + 0.5 mA)							
		RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 0.2 \text{ mA})$							
	Range 3		$10 \text{ kHz} < f \le 1 \text{ MHz}: \pm (5.0\% \text{ of rdng} + 0.2 \text{ mA})$							
		PEAK	$15 \text{ Hz} \le f \le 1 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 0.5 \text{ mA})$							
			$1 \text{ kHz} \le f \le 10 \text{ kHz}: \pm (5.0\% \text{ of rdng} + 0.5 \text{ mA})$							
-	tance, input capa		$1 \text{ M}\Omega \pm 1\%$, < 200 pF							
	mode rejection ra	tio	$f \le 10 \text{ kHz}$: 60 dB or greater, 10 kHz < $f \le 1 \text{ MHz}$: 40 dB or greater							
Judgemen	t function									
Judgemen	t method		Pass/fail judgement by setting upper and lower current limits in window comparator mod							
Judgemen	t		U-FAIL for currents above the upper limit; L-FAIL for currents below the lower limit							
Display, e	tc.		U-FAIL/L-FAIL/PASS display, buzzer sounding							
PASS hole	1		The time for which a PASS judgement is retained can be set to 0.2 s to 10.0 s or to HOLI							
Satting	Range 1		DC/RMS: 30 µA to 600 µA, PEAK: 50 µA to 850 µA (*4)							
Setting	Range 2		DC/RMS: 151 µA to 6.00 mA, PEAK: 213 µA to 8.50 mA (*4)							
range	Range 3		DC/RMS: 1.51 mA to 30.0 mA, PEAK: 2.13 mA to 90.0 mA (*4							
Judgemen	t accuracy		Conforms to measurement accuracy. (Read rdng as set.)							
Measurem	ent of voltage bet	ween A and B								
Measurem	ent range		DC/RMS: 10.000 V to 300.0 V, PEAK: 15.000 V to 430.0 V							
Accuracy			±(3% of rdng + 2 V), measurement range fixed at AUTO							
Input impo	edance		Approx. 40 MΩ							
SELV dete	ection		Set the SELV to detect; if this value is exceeded, the DANGER lamp is turned O?							
SELV sett	ing range		10 V to 99 V, in 1-V steps, OFF function provided							
Timer, test	t execution functi	on, memory								
Time	Test wait time		Setting range: 0 s to 999 s, accuracy: ±(100 ppm of set + 20 ms							
Timer	Test time		Setting range: 1 s to 999 s/OFF function, accuracy: ±(100 ppm of set + 20 ms							
Text execu	ition		Auto test (AUTO): Automatic execution of up to 100 steps (test conditions) Independent test (MANUAL): Independent execution of TC, PCC, or METER measurement							
	Test conditions		AUTO: Up to 100 sequence programs can be saved (up to 500 steps in total). MANUAL: Up to 100 sequence programs can be saved.							
Memory	Test results		The user can select whether to save the judgement results when the							

Other fund	ctions								
Measured	value conversion (CONV)	Converts the measured current value into the corresponding value at the preset power voltage							
		Setting range: 80.0 V to 300.0 V, OFF function provided							
MEASUR	E MODE	Selects a measured value from those below							
		NORM: Displays the measured value in the measurement period							
		MAX: Displays the largest measured value in the measurement period							
Power posi	tive/negative phase selection (POL)	NORM: Positive phase connection, REVS: Negative phase connection							
Single fau	lt selection (COND)	NORM: Normal, FLTNEU: Disconnection of the neutral wire, FLTPE: Disconnection of the protective earth wire							
Earth chec	:k	Generates CONTACTFAIL if the enclosure is grounded in a TC (EncLiv, EncNeu) test							
MEASUR	E CHECK	Checks the measurement function between measurement terminals A and B, and places the tester in the PROTECTION state if an error is detected							
Voltage m	easurement(EUT)	Measurement range: 80.0 V to 250.0 V, resolution: 0.1 V, accuracy: ±(3% of rdng + 1 V							
-	easurement(EUT)	Measurement range: 0.1 A to 15.00 A, resolution: 0.01 A, accuracy: ±(5% of rdng + 30 mA)							
	asurement (effective power)	Measurement range: 10 W to 1500 W							
		Accuracy (at a power voltage of 80 V or higher and a load power factor of 1): ±(5% of rdng + 8 W)							
	Recording	Items: Calibration date and time, test date and time, permissible date and time: Up to 2099							
System	Calibration time limit	Enables the setting of a calibration time limit. Once this time has passed, a warning is output at power on							
clock	management(CAL PROTECT)	ON: Places the tester in the PROTECTION state (disables the							
		use of the tester), OFF: Displays warning.							
Protective	operation	Relay operation error, overload, over range, measurement function check, failure of internal battery, etc.							
Interface	operation	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
RS232C		D-Sub 9-pin connector (conforming to EIA-232D), baud rate: 9600/19200/							
102520		38400 bps (For connection to a PC, use a "9-pin female-female reverse" cable							
GPIB	· · · · · · · · · · · · · · · · · · ·	Conforms to IEEE Std. 488-1978. (SH1,AH1,T6,TE0,L4,LE0,SR1,PP0,DC1,DT0,C0							
USB		USB Specification2.0							
REMOTE		6-pin MINIDIN connector (for HP21-TOS (separately sold option) only)							
SIGNAL		25-pin D-Sub connector							
General		[F.m.= 200 - competing							
General	Rated voltage/current	Terminals A to B: 250 V, terminal to chassis: 250 V, 100 mA							
Measurement	Measurement category	CAT II							
Measurement erminals	Effective terminal display	Terminals effective to measurement are indicated with LED lamps.							
	Specification assured range	Temperature: 5°C to 35°C, humidity: 20% rh to 80% rh (no condensation)							
	Operating range	Temperature: 0°C to 40°C, humidity: 20% rh to 80% rh (no condensation)							
Environment	Storage range	Temperature: -20°C to 70°C, humidity: 90% rh or less (no condensation)							
	Mounting location	Indoors, altitude of 2000 m or less							
	Input power	Nominal input rating:100Vac to 240Vac, 50/60Hz, power consumption: 70 VA max.							
Power	for EUT	Nominal input rating:100Vac to 240Vac, 50/60Hz							
Power	101 EU 1	Rated output capacity: 1500 VA, maximum current: 15 A, rush current: 70 A peak max. (within 20 ms)							
Inclusion									
	resistance	30 M Ω or greater (500 Vdc) (between AC line and chassis, between measurement terminal and chassis)							
Withstand		1390 Vac, 2 seconds/20 mA or less (between AC line and chassis)							
Ground bo		25 Aac/0.1 Ω or less							
Safety (*1		Conforms to the requirements of the directive and standard below. Low Voltage Directive 2014/35/EU, EN61010-1 (Class I, Pollution degree 2)							
Electroma	gnetic compatibility (*1, *2)	Conforms to the requirements of the directive and standard below. EMC Directive 2014/30/EU, EN 61326-1 (Class A), EN 55011 (Class A, Group 1), EN61000-3-2, EN61000-3-3, Applicable conditions: All cables and wires used to connect to this product must be shorter than 3 meters. Use the supplied test leads.							
Outside di	mensions, weight	320[12.60 inch] (345[13.58 inch]) W × 88[3.46 inch] (105[4.13 inch]) H × 270[10.63 inch] (35[13.19 inch]) D mm, approx. 5 kg(approx. 11.02 lbs)							
Accessori	25	1 set of test leads (TL21-TOS: red and black, one each, with alligator clips) 1 flat probe (FP01-TOS), 1 spare fuse (15 A, for EUT power) 1 instruction manual, 1 circuit principle diagram sticker 2 power cords (for the tester and for the EUT AC line)							

External dimensional diagrams

The warm-up time must be 30 minutes or longer.
 rdng denotes a reading, set denotes the set value, and EUT is the electrical equipment under test.

*1: May not apply to custom-made or modified products.
*2: Limited to products with CE marking on their panels.
*3: The maximum range is indicated. The range differs depending on the measurement circuit network.
*4: The maximum range is indicated. The range differs depending on the measurement circuit network. Also, the UPPER setting in each range when the FIX range is selected is indicated.
*5: Current converted value in Network A,B,C and PCC measurement, based on built-in voltmeter accuracy.

Others

High-Voltage Digital Voltmeter

∎149-10A

- Measurement of high voltages (AC/DC) of up to 10 kV maximum.
- Large 4 1/2 digit LED display
- High measuring accuracy and input resistance
- Light weight of only 3 kg
- Compact design
- Excellent ease of maintenance

Specifications	
Operating System	Double integration system (sampling cycle: 3 times/sec)
DC Voltage	Measuring range: 0.500 kV to 10,000 kV Accuracy: \pm (0.5 % of reading + 0.03 % of range) Input resistance: 1000 M $\Omega \pm 2$ %
AC Voltage	Measuring range: 0.500 kV to $10,000 \text{ kV}$ Accuracy: $\pm(1 \% \text{ of reading} + 0.05 \% \text{ of range})$ Frequency characteristics: $50/60 \text{ Hz}$ (sine wave rms value display of mean value response) Input resistance: $1000 \text{ M}\Omega \pm 2\%$
Power Requirements	100V±10%, approx. 10 VA
Dimensions (MAX)	134[5.27 inch]W × 164[6.46 inch]H × 270[10.63 inch]D mm (140[5.51 inch]W × 189[7.44 inch]H × 350[13.78 inch]D mm)
Weight	approx. 3 kg (approx. 6.61 lbs)
Accessories	TL05-TOS high-voltage test lead: 1 HTL-2.5DH high-voltage coaxial cable: 1

This device is described in section 125, paragraph 2-1B1 of UL1492. The RL01-TOS is a variable load resistor for checking the output voltage of hipot testers used in dielectric strength testing on production lines. (Complies with UL regulations including UL1270, UL1409 and UL1410.)

Specifications	
Resistors	120, 159, 210, 279, 369, 489, 648, 858, 1,137, 1,500, 1,989 and 2,148 kΩ
Resistance Accuracy	± 1 %, -0 % of nominal value when set to 120 k Ω , ± 1 % of nominal value when set to other values
Maximum OperatingVoltage	1300 V (continuous rating)
Maximum Overload Voltage	1400 V for 5 seconds (application may not be repeated within 1 minute)
Dimensions (MAX)	200[7.87 inch]W × 100[3.94 inch]H × 260[10.24 inch]D mm (210[8.27 inch]W × 120[4.72 inch]H × 295[11.61 inch]D mm)
Weight	approx. 2.6 kg(approx. 5.73 lbs)
Accessories	TL04-TOS high-voltage test lead: 2 TL05-TOS high-voltage test lead: 1

Calibration Resistor for Insulation Resistance Tester

■929-1M ■929-10M ■929-100M

The 929 Series Standard Resistors are for calibration of Insulation Testers.

Specifications									
Model	929-1M	929-10M	929-100M						
Nominal resistance	1 MΩ 10 MΩ 100 N								
Accuracy of resistance	1 % at 25°C	C ±10 °C							
Temperature coefficient	100 ppm/°C or better								
Voltage coefficient	1 ppm/V or better								
Working voltage rating	1.2 kV								
Dimensions (MAX)	64[25.20 inch]W × 24[9.45 inch]H × 30[11.81 inch]D mm								

*The 929 series standard resistors can not be installed directly to the TOS series. Please use the test lead for connection.

Rack Mount Bracket

	JIS Standard	EIA Standard
Product Name	Bracket Model No	Bracket Model No.
TOS9300	KRB150-TOS	KRB3-TOS
TOS9301	KRB150-TOS	KRB3-TOS
TOS9301PD	KRB150-TOS	KRB3-TOS
TOS9302	KRB150-TOS	KRB3-TOS
TOS9303	KRB150-TOS	KRB3-TOS
TOS9303LC	KRB150-TOS	KRB3-TOS
TOS9320	KRB100-TOS	KRB2-TOS
TOS5302	KRA200-TOS	KRA4-TOS
TOS5301	KRA200-TOS	KRA4-TOS
TOS5300	KRA200-TOS	KRA4-TOS
TOS5200	KRA200-TOS	KRA4-TOS
TOS6200A	KRB100-TOS	KRB2-TOS
TOS6210	KRB100-TOS	KRB2-TOS
TOS3200	KRB150-TOS	KRB3-TOS

UL Resistance Load

■RL01-TOS

Option

- ■TL01-TOS
- [cable length: 1.5 m/max. operating voltage: 5 kV]

TL02-TOS [cable length: 3 m/max. operating voltage: 5 kV]

TL03-TOS [cable length: 1.5 m/max. operating voltage: 10 kV]

■TL04-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS1200, RL01-TOS)]

■TL05-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for 149-10A, RL01-TOS)]

■TL06-TOS

[cable length: 0.5 m/max. operating voltage: 5 kV (for parallel connection of TOS9220/9221)]

TL07-TOS [cable length: 1.5 m/max. operating voltage: 5 kV (for TOS9220/9221)]

TL08-TOS [cable length: 1.5 m/max. operating voltage: 1 kV (for TOS7200)]

TL11-TOS [cable length: 1.5 m/max. operating current: 30 A (for TOS6200A)]

TL12-TOS [cable length: 1.5 m/max. operating current: 60 A (for TOS6210)]

■TL13-TOS

[cable length: 1.6 m/max. operating current: 40 A (for TOS9302, 9303, 9303LC)]

■TL21-TOS [cable length: 1.5 m (for TOS3200)]

■TL22-TOS [cable length: 1.7 m/max. rated voltage: 1000 V /max. rated current: 10 A (for TOS9303LC)]

TL31-TOS [cable length: 1.5 m/max. operating voltage: 5 kV (for TOS5300 Series)]

■TL32-TOS [cable length: 3 m/max. operating voltage: 5 kV (for TOS5300 Series)]

TL33-TOS [cable length: 0.5 m/max. operating voltage: 5 kV (for TOS9320)]

■TL51-TOS [cable length: 1.5 m (for TOS7210S)]

[cable length: 1.5 m/max. operating voltage: 10 kV (for 149-10A)]

Test Probe

- ■HP01A-TOS^{*} [cable length: 1.8 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]
- ■HP02A-TOS^{*}
- [cable length: 3.5 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]
- \ast The optional Adaptor DD-5P/9P is required for the connection.

■HP11-TOS

[cable length:1.8 m/max.operating voltage:1 kV DC/ max.operating current:100 mA]

HP21-TOS [cable length:1.8 m/max.operating voltage:250 Vrms/ max.operating current:100 mA]

■LP01-TOS [cable length: 2 m/max. operating current: 30 A]

■LP02-TOS [cable length: 2 m/max. operating current: 60 A]

■FP01-TOS (flat probe for TOS3200, TOS9303LC)

Option

CHARDEN CONTRACTOR

Remote Control Box	DIN Cable	Multi Outlet
■RC01-TOS [*] [one-hand operation/dimensions: 200W×70H×39D mm] Accessory cable length: 1.5 m	DD-3 5P [cable length: 3 m/DIN plug to DIN plug]	■OT01-TOS (multi outlet for TOS3200)
RC02-TOS [both-hands operation/dimensions: 330W×70H×39D mm] Accessory cable length: 1.5 m		O
RC01-TOS RC02-TOS	Conversion Cable	Terminal Unit ■TU01-TOS (for TOS5300/TOS5200 Series)
* The optional Adaptor DD-5P/6P is required for the connection.	[Adapter / DIN to Mini DIN]	
Warning Light Unit PL01-TOS (for 100 V AC)	DD-5P/9P [Adapter /DIN to Mini DIN]	
	The DD-5P/9P DIN adapter cable (5 pin to 9 pin) is for connecting the following option products to the TOS9300/TOS5300/TOS5200 series. • Remote control box(RC01-TOS/RC02-TOS) • High voltage test probe(HP01A-TOS/HP02A-TOS) • Test probe for touch current test(HP21-TOS)	This is a terminal unit for converting a 25-pin SIGNAL I/O connector of TOS5300/5301/5302/5200 to a 14-pin SIGNAL I/O connector of TOS5050A/5051A. By connecting via this product, the external control performed with TOS5050A/5051A can be performed with TOS5300/5301/5302/5200 at the same time.
■PL02A-TOS (for 24 V DC)		

	Cross Reference of options for Electrical Safety Testers																								
	Remote Control		Warning Light Unit, Terminal Unit					Test I	Probe				Test Lead												
Model	RC01/ 02-TOS	DD- 3 5P	PL01- TOS	PL02A- TOS	TU01- TOS	HP01A/ 02A-TOS	HP11- TOS	HP21- TOS	LP01- TOS	LP02- TOS	FP01- TOS	TL01/02/ 03-TOS		TL05- TOS	TL06- TOS	TL07- TOS	TL08- TOS	TL11/ 12-TOS		TL21- TOS	TL22- TOS	TL31/ 32-TOS	TL33- TOS	TL51- TOS	HTL2.5- DH
TOS9300	0			0		0																0	0		
TOS9301	0			0		0																0	0		
TOS9301PD	0			0		0																0	0		
TOS9302	0			0		0													0			0	0		
TOS9303	0			0		0													0			0	0		
TOS9303LC	0			0		0		0			0								0		0	0	0		
TOS9320																0						0	0		
TOS9213AS	0	0		0		0						0	0		0										
TOS5101	0	0	0									0													
TOS5302	0			0	0	0																0			
TOS5301	0			0	0	0																0			
TOS5300	0			0	0	0																0			
TOS5200	0			0	0	0																0			
TOS6200A	0	0							0	0								0							
TOS6210	0	0							0	0								0							
TOS7200	0	0					0										0								
TOS7210S	0	0																						0	
TOS3200								0			0									0					
149-10A														0											0
RL01-TOS													0	0	0										

: Required the converting adapter "DD-5p/6p" 👘 : Allows to use within the cable rating 📄 : Required the converting adapter "DD-5p/9p"

Kikusui Electronics Corporation 55

KIKUSUI ELECTRONICS CORPORATION

Southwood 4F,6-1 Chigasaki-chuo,Tsuzuki-ku,Yokohama,224-0032,Japan Phone: (+81)45-482-6353,Facsimile: (+81)45-482-6261,www.kikusui.co.jp

KIKUSUI AMERICA, INC.1-310-214-0000 www.kikusuiamerica.com 3625 Del Amo Blvd, Suite 160, Torrance, CA 90503 Phone : 310-214-0000 Facsimile : 310-214-0014

 KIKUSUI TRADING (SHANGHAI) Co., Ltd.
 www.kikusui.cn

 Image: Construction of the state of the state

For our local sales distributors and representatives, please refer to "sales network" of our website.

•Distributor:

All products contained in this catalogue are equipment and devices that are premised on use under the supervision of qualified personnel, and are not designed or produced for home-use or use by general consumers. If Specifications, design and so forth are subject to change without prior notice to improve the quality. If Product names and prices are subject to change and production may be discontinued when necessary. Product names, company names and brand names contained in this catalogue represent the respective registered trade name or trade mark. Colors, textures and so forth of photographs shown in this catalogue may differ from actual products due to a limited fidelity in printing. Although every effort has been made to provide the information as accurate as possible for this catalogue, cretain details have unavoidably been omitted due to limitations in space.
If you find any misprints or errors in this catalogue, it would be appreciated if you would inform us.

Printed in Japan